Chin. Phys. Lett.  2021, Vol. 38 Issue (7): 073201    DOI: 10.1088/0256-307X/38/7/073201
ATOMIC AND MOLECULAR PHYSICS |
Rabi Spectroscopy and Sensitivity of a Floquet Engineered Optical Lattice Clock
Mo-Juan Yin1†, Tao Wang2†, Xiao-Tong Lu1, Ting Li1, Ye-Bing Wang1, Xue-Feng Zhang2*, Wei-Dong Li3*, Augusto Smerzi3,4*, and Hong Chang1,5*
1Key Laboratory of Time and Frequency Primary Standards, National Time Service Center, Chinese Academy of Sciences, Xi'an 710600, China
2Department of Physics, and Center of Quantum Materials and Devices, Chongqing University, Chongqing 401331, China
3Department of Physics and Institute of Theoretical Physics, Shanxi University, Taiyuan 030006, China
4QSTAR, INO-CNR, and LENS, Largo Enrico Fermi 2, I-50125 Firenze, Italy
5School of Astronomy and Space Science, University of Chinese Academy of Sciences, Beijing 100049, China
Cite this article:   
Mo-Juan Yin, Tao Wang, Xiao-Tong Lu et al  2021 Chin. Phys. Lett. 38 073201
Download: PDF(1464KB)   PDF(mobile)(2738KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We periodically modulate the lattice trapping potential of a $^{87}$Sr optical clock to Floquet engineer the clock transition. In the context of atomic gases in lattices, Floquet engineering has been used to shape the dispersion and topology of Bloch quasi-energy bands. Differently from these previous works manipulating the external (spatial) quasi-energies, we target the internal atomic degrees of freedom. We shape Floquet spin quasi-energies and measure their resonance profiles with Rabi spectroscopy. We provide the spectroscopic sensitivity of each band by measuring the Fisher information and show that this is not depleted by the Floquet dynamical modulation. The demonstration that the internal degrees of freedom can be selectively engineered by manipulating the external degrees of freedom inaugurates a novel device with potential applications in metrology, sensing and quantum simulations.
Received: 08 May 2021      Published: 08 June 2021
PACS:  32.70.Jz (Line shapes, widths, and shifts)  
  32.80.Qk (Coherent control of atomic interactions with photons)  
  32.80.Wr (Other multiphoton processes)  
  31.15.Lc  
Fund: Supported by the National Natural Science Foundation of China (Grant Nos. 61775220, 11804034, 11874094, 12047564, 11874247, 11874246), the Key Research Project of Frontier Science of the Chinese Academy of Sciences (Grant No. QYZDB-SSW-JSC004), and the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant Nos. XDB21030100 and XDB35010202), the Special Foundation for Theoretical Physics Research Program of China (Grant No. 11647165), the Fundamental Research Funds for the Central Universities (Grant No. 2020CDJQY-Z003), the National Key R&D Program of China (Grant No. 2017YFA0304501), the 111 Project (Grant No. D18001), the Hundred Talent Program of the Shanxi Province (2018), and the EMPIR-USOQS, EMPIR Project co-funded by the European Unions Horizon2020 Research and Innovation Programme and the EMPIR Participating States.
Just Accepted Date: 18 June 2021   Online First Date: 08 June 2021   
TRENDMD:   
URL:  
http://cpl.iphy.ac.cn/10.1088/0256-307X/38/7/073201       OR      http://cpl.iphy.ac.cn/Y2021/V38/I7/073201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Mo-Juan Yin
Tao Wang
Xiao-Tong Lu
Ting Li
Ye-Bing Wang
Xue-Feng Zhang
Wei-Dong Li
Augusto Smerzi
and Hong Chang
[1] Rudner M S and Lindner N H 2020 Nat. Rev. Phys. 2 229
[2] Eckardt A 2017 Rev. Mod. Phys. 89 011004
[3] Bukov M, D'Alessio L, and Polkovnikov A 2015 Adv. Phys. 64 139
[4] Rechtsman M C, Zeuner J M, Plotnik Y, Lumer Y, Podolsky D, Dreisow F, Nolte S, Segev M, and Szameit A 2013 Nature 496 196
[5] Roushan P, Neill C, Megrant A, Chen Y, Babbush R, Barends R, Campbell B, Chen Z, Chiaro B, Dunsworth A, Fowler A, Jeffrey E, Kelly J, Lucero E, Mutus J, O'Malley P J J, Neeley M, Quintana C, Sank D, Vainsencher A, Wenner J, White T, Kapit E, Neven H, and Martinis J 2017 Nat. Phys. 13 146
[6] Lignier H, Sias C, Ciampini D, Singh Y, Zenesini A, Morsch O, and Arimondo E 2007 Phys. Rev. Lett. 99 220403
[7] Zenesini A, Lignier H, Ciampini D, Morsch O, and Arimondo E 2009 Phys. Rev. Lett. 102 100403
[8] Struck J, lschlger C, Le Targat R, Soltan-Panahi P, Eckardt A, Lewenstein M, Windpassinger P, and Sengstock K 2011 Science 333 996
[9] Grg F, Messer M, Sandholzer K, Jotzu G, Desbuquois R, and Esslinger T 2018 Nature 553 481
[10] Struck J, Weinberg M, lschlger C, Windpassinger P, Simonet J, Sengstock K, Hppner R, Hauke P, Eckardt A, Lewenstein M, and Mathey L 2013 Nat. Phys. 9 738
[11] Cooper N R, Dalibard J, and Spielman I B 2019 Rev. Mod. Phys. 91 015005
[12] Aidelsburger M, Atala M, Lohse M, Barreiro J T, Paredes B, and Bloch I 2013 Phys. Rev. Lett. 111 185301
[13] Miyake H, Siviloglou G A, Kennedy C J, Burton W C, and Ketterle W 2013 Phys. Rev. Lett. 111 185302
[14] Jotzu G, Messer M, Desbuquois R, Lebrat M, Uehlinger T, Greif D, and Esslinger T 2014 Nature 515 237
[15] Kolkowitz S, Pikovski I, Langellier N, Lukin M D, Walsworth R L, and Ye J 2016 Phys. Rev. D 94 124043
[16] Norcia M A, Cline J R K, and Thompson J K 2017 Phys. Rev. A 96 042118
[17] Katori H, Takamoto M, Pal'chikov V G, and Ovsiannikov V D 2003 Phys. Rev. Lett. 91 173005
[18] Cirac J I and Zoller P 2012 Nat. Phys. 8 264
[19] Bloch I, Dalibard J, and Nascimbène S 2012 Nat. Phys. 8 267
[20] Gross C and Bloch I 2017 Science 357 995
[21] Pezzè L, Smerzi A, Oberthaler M K, Schmied R, and Treutlein P 2018 Rev. Mod. Phys. 90 035005
[22] McGrew W F, Zhang X, Fasano R J, Schffer S A, Beloy K, Nicolodi D, Brown R C, Hinkley N, Milani G, Schioppo M, Yoon T H, and Ludlow A D 2018 Nature 564 87
[23] Zhang R, Cheng Y, Zhang P, and Zhai H 2020 Nat. Rev. Phys. 2 213
[24] Kolkowitz S, Bromley S L, Bothwell T et al. 2017 Nature 542 66
[25] Sillanpaa M, Lehtinen T, Paila A, Makhlin Y, and Hakonen P 2006 Phys. Rev. Lett. 96 187002
[26] Shevchenko S N, Ashhab S, and Nori F 2010 Phys. Rep. 492 1
[27]Pezzè L and Smerzi A 2014 Quantum Theory of Phase Estimation, Atom Interferometry, Proceedings of the International School of Physics “Enrico Fermi”, Course 188, edited by Tino G M and Kasevich M A Varenna, (Amsterdam: IOS Press) pp 691–741
[28] Giovannetti V, Lloyd S, and Maccone L 2011 Nat. Photon. 5 222
[29] Takamoto M and Katori H 2003 Phys. Rev. Lett. 91 223001
[30] Takamoto M, Hong F L, Higashi R, and Katori H 2005 Nature 435 321
[31]See the Supplemental Material for more details about experimental process, theoretical model, spectroscopy calculation, extraction of experiment parameters and Fisher information.
[32] Mandel O, Greiner M, Widera A, Rom T, Hansch T W, and Bloch I 2003 Phys. Rev. Lett. 91 010407
[33] Dai H N, Yang B, Reingruber A, Xu X F, Jiang X, Chen Y A, Yuan Z S, Pan J W 2016 Nat. Phys. 12 783
[34] Wang Y B, Lu X T, Lu B Q, Kong D H, and Chang H 2018 Appl. Sci. 8 2194
[35] Blatt S, Thomsen J W, Campbell G K, Ludlow A D, Swallows M D, Martin M J, Boyd M M, and Ye J 2009 Phys. Rev. A 80 052703
[36] Rihele F 2004 Frequency Standards: Basics and Applications (Berlin: Wiley-VCH) chap 3 p 60
[37] Itano W M, Bergquist J C, Bollinger J J, Gilligan J M, Heinzen D J, Moore F L, Raizen M G, and Wineland D J 1993 Phys. Rev. A 47 3554
[38] Chin C, Grimm R, Julienne P, and Tiesinga E 2010 Rev. Mod. Phys. 82 1225
[39] Pezzè L and Smerzi A 2009 Phys. Rev. Lett. 102 100401
[40] Pezzè L, Li Y, Li W D, and Smerzi A 2016 Proc. Natl. Acad. Sci. USA 113 11459
Related articles from Frontiers Journals
[1] Shao-Long Chen, Peng-Peng Zhou, Shi-Yong Liang, Wei Sun, Huan-Yao Sun, Yao Huang, Hua Guan, Ke-Lin Gao. Deceleration of Metastable $\rm{Li}^{+}$ Beam by Combining Electrostatic Lens and Ion Trap Technique[J]. Chin. Phys. Lett., 2020, 37(7): 073201
[2] Fu-Qiang Yu, Mu-Tian Cheng, Shao-Ming Li, Xiao-San Ma, Zhi-Feng Zhu, Xian-Shan Huang. Polarization Conversion of Single Photon via Scattering by a ${\Lambda}$ System in a Semi-Infinite Waveguide[J]. Chin. Phys. Lett., 2019, 36(5): 073201
[3] Khan Sadiq Nawaz, Cheng-Dong Mi, Liang-Chao Chen, Peng-Jun Wang, Jing Zhang. Experimental Investigation of the Electromagnetically Induced-Absorption-Like Effect for an N-Type Energy Level in a Rubidium BEC[J]. Chin. Phys. Lett., 2019, 36(4): 073201
[4] Yi-Hong Li, Shao-Hua Li, Jin-Peng Yuan, Li-Rong Wang, Lian-Tuan Xiao, Suo-Tang Jia. Experimental Study on Double Resonance Optical Pumping Spectroscopy in a Ladder-Type System of $^{87}$Rb Atoms[J]. Chin. Phys. Lett., 2018, 35(9): 073201
[5] Ce Shi, Mu-Tian Cheng, Xiao-San Ma, Dong Wang, Xianshan Huang, Bing Wang, Jia-Yan Zhang. Nonreciprocal Single Photon Frequency Conversion via Chiral Coupling between a V-Type System and a Pair of Waveguides[J]. Chin. Phys. Lett., 2018, 35(5): 073201
[6] Sheng-Nan Zhang, Xiao-Gang Zhang, Jian-Hui Tu, Zhao-Jie Jiang, Hao-Sen Shang, Chuan-Wen Zhu, Wei Yang, Jing-Zhong Cui, Jing-Biao Chen. A 420nm Blue Diode Laser for the Potential Rubidium Optical Frequency Standard[J]. Chin. Phys. Lett., 2017, 34(7): 073201
[7] Jie Zhang, Ke Deng, Jun Luo, Ze-Huang Lu. Direct Laser Cooling Al$^+$ Ion Optical Clocks[J]. Chin. Phys. Lett., 2017, 34(5): 073201
[8] Hui Liu, Xi Zhang, Kun-Liang Jiang, Jin-Qi Wang, Qiang Zhu, Zhuan-Xian Xiong, Ling-Xiang He, Bao-Long Lyu. Realization of Closed-Loop Operation of Optical Lattice Clock Based on $^{171}$Yb[J]. Chin. Phys. Lett., 2017, 34(2): 073201
[9] Shao-Yang Dai, Kun-Qian Li, Yue-Yang Zhai, Wei Xia, Qing Wang, Wei Xiong, Xiang-Hui Qi, Xu-Zong Chen. Absolutely Direct Frequency Measurement of Two-Photon Transition Using Multi-Peak Fitting Approach[J]. Chin. Phys. Lett., 2017, 34(1): 073201
[10] Teng-Fei Meng, Zhong-Hua Ji, Yan-Ting Zhao, Lian-Tuan Xiao, Suo-Tang Jia. Excitation Dependence of Dipole–Dipole Broadening in Selective Reflection Spectroscopy[J]. Chin. Phys. Lett., 2016, 33(11): 073201
[11] Zhi-Hui Yang, Hao Liu, Yue-Hong He, Man Wang, Yong-Quan Wan, Yi-He Chen, Lei She, Jiao-Mei Li. Optimal Microwave Radiation Field Parameters for Mercury Ion Microwave Frequency Standards[J]. Chin. Phys. Lett., 2016, 33(06): 073201
[12] Wei Xia, Shao-Yang Dai, Yin Zhang, Kun-Qian Li, Qi Yu, Xu-Zong Chen. Precision Frequency Measurement of $^{87}$Rb 5$S_{1/2}$ ($F=2$)$\to$5$D_{5/2}$ ($F''=4$) Two-Photon Transition through a Fiber-Based Optical Frequency Comb[J]. Chin. Phys. Lett., 2016, 33(05): 073201
[13] Bin Duan, Muhammad Abbas Bari, Ze-Qing Wu, Jun Yan, Jian-Guo Wang. Stark-Broadened Profiles of the Spectral Line $P_ \alpha$ in He II Ions[J]. Chin. Phys. Lett., 2016, 33(03): 073201
[14] LIN Yi-Ge, WANG Qiang, LI Ye, MENG Fei, LIN Bai-Ke, ZANG Er-Jun, SUN Zhen, FANG Fang, LI Tian-Chu, FANG Zhan-Jun. First Evaluation and Frequency Measurement of the Strontium Optical Lattice Clock at NIM[J]. Chin. Phys. Lett., 2015, 32(09): 073201
[15] YU Geng-Hua, XU Qi-Ming, ZHOU Chao, DUAN Cheng-Bo, LI Long, CHAI Rui-Peng. Magic Wavelengths of the Optical Clock Transition at 1107 nm of Barium[J]. Chin. Phys. Lett., 2015, 32(03): 073201
Viewed
Full text


Abstract