Chin. Phys. Lett.  2021, Vol. 38 Issue (6): 060301    DOI: 10.1088/0256-307X/38/6/060301
GENERAL |
Angular Momentum Josephson Effect between Two Isolated Condensates
Wei-Feng Zhuang1, Yue-Xin Huang1, and Ming Gong1,2*
1CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China
2Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
Cite this article:   
Wei-Feng Zhuang, Yue-Xin Huang, and Ming Gong 2021 Chin. Phys. Lett. 38 060301
Download: PDF(1155KB)   PDF(mobile)(1319KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We demonstrate that the two degenerate energy levels in spin–orbit coupled trapped Bose gases, coupled by a quenched Zeeman field, can be used for angular momentum Josephson effect. In a static quenched field, we can realize a Josephson oscillation with a period ranging from millisecond to hundreds of milliseconds. Moreover, by a driven Zeeman field, we realize a new Josephson oscillation, in which the population imbalance may have the same expression as the current in the direct-current Josephson effect. When the dynamics of the condensate cannot follow up the modulation frequency, it is in the self-trapping regime. This new dynamic is understood from the time-dependent evolution of the constant-energy trajectory in the phase space. This model has several salient advantages compared to the previous ones. The condensates are isolated from their excitations by a finite gap, thus can greatly suppress the damping effect induced by thermal atoms and Bogoliubov excitations. The oscillation period can be tuned by several orders of magnitude without influencing other parameters. In experiments, the dynamics can be mapped out from spin and momentum spaces, thus it is not limited by the spatial resolution in absorption imaging. This system can serve as a promising platform for matter wave interferometry and quantum metrology.
Received: 20 February 2021      Published: 25 May 2021
PACS:  74.50.+r (Tunneling phenomena; Josephson effects)  
  71.70.Ej (Spin-orbit coupling, Zeeman and Stark splitting, Jahn-Teller effect)  
  67.85.鈭抎  
  67.85.Hj (Bose-Einstein condensates in optical potentials)  
Fund: Supported by the National Key Research and Development Program in China (Grant Nos. 2017YFA0304504 and 2017YFA0304103), and the National Natural Science Foundation of China (Grant No. 11774328).
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/38/6/060301       OR      https://cpl.iphy.ac.cn/Y2021/V38/I6/060301
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Wei-Feng Zhuang
Yue-Xin Huang
and Ming Gong
[1] Josephson B D 1962 Phys. Rev. Lett. 1 251
[2] Josephson B D 1974 Europhys. News 5 1
[3]Feynman R P, Leighton R B, and Sands M 1965 Lectures on Physics (Berlin: Springer) vol iii
[4] Bloch F 1970 Phys. Rev. B 2 109
[5] Anderson P W and Rowell J M 1963 Phys. Rev. Lett. 10 230
[6] Büttiker M, Imry Y, and Landauer R 1983 Phys. Lett. A 96 365
[7] Sukhatme K, Mukharsky Y, Chui T, and Pearson D 2001 Nature 411 280
[8] Avenel O and Varoquaux E 1988 Phys. Rev. Lett. 60 416
[9] Albiez M, Gati R, Fölling J, Hunsmann S, and Cristiani M 2005 Phys. Rev. Lett. 95 010402
[10] Levy S, Lahoud E, Shomroni I, and Steinhauer J 2007 Nature 449 579
[11] Cataliotti F, Burger S, Fort C, Maddaloni P, and Minardi F 2001 Science 293 843
[12] Lagoudakis K, Pietka B, Wouters M, André R, and Deveaud-Plédran B 2010 Phys. Rev. Lett. 105 120403
[13] Abbarchi M, Amo A, Sala V, Solnyshkov D, and Flayac H 2013 Nat. Phys. 9 275
[14] Valtolina G, Burchianti A, Amico A, Neri E, and Xhani K 2015 Science 350 1505
[15] Zimmerman J and Silver A 1966 Phys. Rev. 141 367
[16] Koch R, Umbach C, Clark G, Chaudhari P, and Laibowitz R 1987 Appl. Phys. Lett. 51 200
[17] Fagaly R 2006 Rev. Sci. Instrum. 77 101101
[18] Ryu C, Blackburn P, Blinova A, and Boshier M 2013 Phys. Rev. Lett. 111 205301
[19] Gallop J 2003 Supercond. Sci. Technol. 16 1575
[20] Ofek N, Petrenko A, Heeres R, Reinhold P, and Leghtas Z 2016 Nature 536 441
[21] Córcoles A D, Magesan E, Srinivasan S J, Cross A W, and Steffen M 2015 Nat. Commun. 6 6979
[22] Kelly J, Barends R, Fowler A G, Megrant A, and Jeffrey E 2015 Nature 519 66
[23] Ozyuzer L, Koshelev A E, Kurter C, Gopalsami N, and Li Q 2007 Science 318 1291
[24] Tachiki M, Iizuka M, Minami K, Tejima S, and Nakamura H 2005 Phys. Rev. B 71 134515
[25] Shapiro S 1963 Phys. Rev. Lett. 11 80
[26] Kleiner R, Steinmeyer F, Kunkel G, and Müller P 1992 Phys. Rev. Lett. 68 2394
[27] Smerzi A, Fantoni S, Giovanazzi S, and Shenoy S 1997 Phys. Rev. Lett. 79 4950
[28] Javanainen J 1986 Phys. Rev. Lett. 57 3164
[29] Shin Y, Jo G B, Saba M, Pasquini T, and Ketterle W 2005 Phys. Rev. Lett. 95 170402
[30] Zibold T, Nicklas E, Gross C, and Oberthaler M K 2010 Phys. Rev. Lett. 105 204101
[31] Chang M S, Qin Q, Zhang W, You L, and Chapman M S 2005 Nat. Phys. 1 111
[32] Hou J, Luo X W, Sun K, Bersano T, and Gokhroo V 2018 Phys. Rev. Lett. 120 120401
[33] Bersano T M, Hou J, Mossman S, Gokhroo V, and Luo X W 2019 Phys. Rev. A 99 051602
[34] Gallem A, Mateo A M, Mayol R, and Guilleumas M 2016 New J. Phys. 18 015003
[35] Zapata I, Sols F, and Leggett A J 1998 Phys. Rev. A 57 R28
[36] Polo J, Ahufinger V, Hekking F W, and Minguzzi A 2018 Phys. Rev. Lett. 121 090404
[37] Wang Y J, Anderson D Z, Bright V M, Cornell E A, and Diot Q 2005 Phys. Rev. Lett. 94 090405
[38] Schumm T, Hofferberth S, Andersson L M, Wildermuth S, and Groth S 2005 Nat. Phys. 1 57
[39] Pezzè L, Smerzi A, Oberthaler M K, Schmied R, and Treutlein P 2018 Rev. Mod. Phys. 90 035005
[40] Zhai H 2015 Rep. Prog. Phys. 78 026001
[41] Dresselhaus G 1955 Phys. Rev. 100 580
[42] Bychkov Y A and Rashba E I 1984 J. Phys. C 17 6039
[43] Liu X J, Borunda M F, Liu X, and Sinova J 2009 Phys. Rev. Lett. 102 046402
[44] Lin Y J, Compton R L, Perry A R, Phillips W D, and Porto J V 2009 Phys. Rev. Lett. 102 130401
[45] Wang C, Gao C, Jian C M, and Zhai H 2010 Phys. Rev. Lett. 105 160403
[46] Lin Y J, Jimenez-Garcia K, and Spielman I B 2011 Nature 471 83
[47] Li Y, Martone G I, Pitaevskii L P, and Stringari S 2013 Phys. Rev. Lett. 110 235302
[48] Bao W and Cai Y 2015 SIAM J. Appl. Math. 75 492
[49] Bhuvaneswari S, Nithyanandan K, and Muruganandam P 2018 J. Phys. Commun. 2 025008
[50] Jochim S, Bartenstein M, Altmeyer A, Hendl G, and Riedl S 2003 Science 302 2101
[51] Bradley C C, Sackett C, Tollett J, and Hulet R G 1995 Phys. Rev. Lett. 75 1687
[52] Zhai H 2012 Int. J. Mod. Phys. B 26 1230001
[53] Zheng W, Yu Z Q, Cui X, and Zhai H 2013 J. Phys. B 46 134007
[54] Ramachandhran B, Opanchuk B, Liu X J, Pu H, and Drummond P D 2012 Phys. Rev. A 85 023606
[55] Hu H, Ramachandhran B, Pu H, and Liu X J 2012 Phys. Rev. Lett. 108 010402
[56] Wu C J, Ian M S, and Zhou X F 2011 Chin. Phys. Lett. 28 097102
[57] Milburn G, Corney J, Wright E M, and Walls D 1997 Phys. Rev. A 55 4318
[58] Shin Y, Saba M, Pasquini T, Ketterle W, and Pritchard D 2004 Phys. Rev. Lett. 92 050405
[59] Müstecaplıoğlu Zhang W X and You L 2007 Phys. Rev. A 75 023605
[60] Jin D, Ensher J, Matthews M, Wieman C, and Cornell E A 1996 Phys. Rev. Lett. 77 420
[61] Mewes M O, Andrews M, Van Druten N, Kurn D, and Durfee D 1996 Phys. Rev. Lett. 77 988
[62] Edwards M, Ruprecht P, Burnett K, Dodd R, and Clark C W 1996 Phys. Rev. Lett. 77 1671
[63] Mewes M O, Andrews M, Van Druten N, Kurn D, and Durfee D 1996 Phys. Rev. Lett. 77 416
[64] Rauer B, Grišins P, Mazets I E, Schweigler T, and Rohringer W 2016 Phys. Rev. Lett. 116 030402
[65] Pigneur M, Berrada T, Bonneau M, Schumm T, and Demler E 2018 Phys. Rev. Lett. 120 173601
[66]The integrals for these three parameters are: $V_{m} = \int g\big(|\varphi_{m-2\uparrow}|^{4}+|\varphi_{m-2\downarrow}|^{4}+2c_{12}| \varphi_{m-2\uparrow}|^{2}|\varphi_{m-2\downarrow}|^{2}\big)d\boldsymbol{r}$ for $m= 1$, $2$, and $V_{12} = \frac{1}{2} \int g\big(2|\varphi_{0\uparrow}|^{2}|\varphi_{-1\uparrow}|^{2} +2|\varphi_{-1\downarrow}|^{2}|\varphi_{0\downarrow}|^{2}+ c_{12}|\varphi_{-1\uparrow}|^{2}|\varphi_{0\downarrow}|^{2} +c_{12}|\varphi_{-1\downarrow}|^{2}|\varphi_{0\uparrow}|^{2}+ c_{12}\varphi_{-1\uparrow}^{\ast}\varphi_{-1\downarrow}^{\ast} \varphi_{0\downarrow}\varphi_{0\uparrow}+\textrm{H.c.}\big)d\boldsymbol{r} $.
[67] Bloch I 2005 Nat. Phys. 1 23
[68] Liu B, Fu L B, Yang S P, and Liu J 2007 Phys. Rev. A 75 033601
[69] Trombettoni A and Smerzi A 2001 Phys. Rev. Lett. 86 2353
[70]In the Josepshson junction considered by Feynman (Ref.[3]), the current and phase are described by $I = \dot{z} = K \sin(\theta)$ and $\dot{\theta} = [\mu_0 + A \cos(\omega t)]$. From the second equation, $\theta(t) = \theta_0 + \mu_0 t + A \sin(\omega t)/\omega$. The current $I$ in this case has exactly the same form as $z(t)$ considered in Eq. (10).
[71]In the strong modulating limit when $\omega_2 > \omega$, the excited bands may also be excited. We find that when $\omega_2 = 0.8\omega$ ($\eta = 80\%$), the excitation of the states are still negligible for the parameters used in Fig. 4(b).
[72]Using the transverse confinement frequency in one-dimensional BEC (Refs.[64, 65]) with $\omega = 2\pi \cdot 2.0$ kHz, $\alpha_J = 0.9$, $h_x = 2\pi\cdot 0.8$ kHz ($\eta = 40\%$), we estimate $T = 1.4$ ms.
[73] Pan F and Draayer J 1999 Phys. Lett. B 451 1
[74] Ma J, Wang X, Sun C P, and Nori F 2011 Phys. Rep. 509 89
[75] Salvatori G, Mandarino A, and Paris M G 2014 Phys. Rev. A 90 022111
[76] Luo X Y, Zou Y Q, Wu L N, Liu Q, and Han M F 2017 Science 355 620
[77] Graefe E and Korsch H 2007 Phys. Rev. A 76 032116
Viewed
Full text


Abstract