Chin. Phys. Lett.  2021, Vol. 38 Issue (5): 057402    DOI: 10.1088/0256-307X/38/5/057402
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Highly Robust Reentrant Superconductivity in CsV$_{3}$Sb$_{5}$ under Pressure
Xu Chen1†, Xinhui Zhan2†, Xiaojun Wang2, Jun Deng1, Xiao-Bing Liu2*, Xin Chen2, Jian-Gang Guo1,3*, and Xiaolong Chen1,3*
1Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
2Laboratory of High Pressure Physics and Material Science (HPPMS), School of Physics and Physical Engineering, Qufu Normal University, Qufu 273100, China
3Songshan Lake Materials Laboratory, Dongguan 523808, China
Cite this article:   
Xu Chen, Xinhui Zhan, Xiaojun Wang et al  2021 Chin. Phys. Lett. 38 057402
Download: PDF(3241KB)   PDF(mobile)(6104KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We present the superconducting (SC) property and high-robustness of structural stability of kagome CsV$_{3}$Sb$_{5}$ under in situ high pressures. For the initial SC-I phase, its $T_{\rm c}$ is quickly enhanced from 3.5 K to 7.6 K and then totally suppressed at $P \sim 10$ GPa. With further increasing pressure, an SC-II phase emerges at $P \sim 15$ GPa and persists up to 100 GPa. The $T_{\rm c}$ rapidly increases to the maximal value of 5.2 K at $P=53.6$ GPa and slowly decreases to 4.7 K at $P=100$ GPa. A two-dome-like variation of $T_{\rm c}$ in CsV$_{3}$Sb$_{5}$ is concluded here. The Raman measurements demonstrate that weakening of $E_{\rm 2g}$ mode and strengthening of $E_{\rm 1g}$ mode occur without phase transition in the SC-II phase, which is supported by the results of phonon spectra calculations. Electronic structure calculations reveal that exertion of pressure may bridge the gap of topological surface nontrivial states near $E_{\rm F}$, i.e., disappearance of $Z_{2}$ invariant. Meanwhile, the Fermi surface enlarges significantly, consistent with the increased carrier density. The findings here suggest that the change of electronic structure and strengthened electron-phonon coupling should be responsible for the pressure-induced reentrant SC.
Received: 29 March 2021      Published: 20 April 2021
PACS:  74.25.Dw (Superconductivity phase diagrams)  
  74.62.Fj (Effects of pressure)  
  74.25.nd (Raman and optical spectroscopy)  
  71.18.+y}  
Fund: Supported by the National Key Research and Development Program of China (Grant Nos. 2017YFA0304700, 2018YFE0202601, and 2016YFA0300600), the National Natural Science Foundation of China (Grant Nos. 51922105, 11804184, 11974208, and 51772322), the Chinese Academy of Sciences (Grant No. QYZDJ-SSW-SLH013), the Beijing Natural Science Foundation (Grant No. Z200005), and the Shandong Provincial Natural Science Foundation (Grant Nos. ZR2020YQ05, ZR2019MA054, and 2019KJJ020).
TRENDMD:   
URL:  
http://cpl.iphy.ac.cn/10.1088/0256-307X/38/5/057402       OR      http://cpl.iphy.ac.cn/Y2021/V38/I5/057402
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Xu Chen
Xinhui Zhan
Xiaojun Wang
Jun Deng
Xiao-Bing Liu
Xin Chen
Jian-Gang Guo
and Xiaolong Chen
[1] Han T H, Helton J S, Chu S, Nocera D G, Rodriguez-Rivera J A, Broholm C, and Lee Y S 2012 Nature 492 406
[2] Sachdev S 1992 Phys. Rev. B 45 12377
[3] Zhou Y, Kanoda K, and Ng T K 2017 Rev. Mod. Phys. 89 025003
[4] Bilitewski T and Moessner R 2018 Phys. Rev. B 98 235109
[5] Mazin I I, Jeschke H O, Lechermann F, Lee H, Fink M, Thomale R, and Valent R 2014 Nat. Commun. 5 4261
[6] Wang W S, Li Z Z, Xiang Y Y, and Wang Q H 2013 Phys. Rev. B 87 115135
[7] Ko W H, Lee P A, and Wen X G 2009 Phys. Rev. B 79 214502
[8] O'Brien A, Pollmann F, and Fulde P 2010 Phys. Rev. B 81 235115
[9] Isakov S V, Wessel S, Melko R G, Sengupta K, and Kim Y B 2006 Phys. Rev. Lett. 97 147202
[10] Yan S M, Huse D A, and White S R 2011 Science 332 1173
[11] Kiesel M L, Platt C, and Thomale R 2013 Phys. Rev. Lett. 110 126405
[12] Guo H M and Franz M 2009 Phys. Rev. B 80 113102
[13] Rüegg A and Fiete G A 2011 Phys. Rev. B 83 165118
[14] Yu S L and Li J X 2012 Phys. Rev. B 85 144402
[15] Ortiz B R, Gomes L C, Morey J R, Winiarski M, Bordelon M, Mangum J S, Oswald I W H, Rodriguez-Rivera J A, Neilson J R, Wilson S D, Ertekin E, McQueen T M, and Toberer E S 2019 Phys. Rev. Mater. 3 094407
[16] Ortiz B R and Sarte P M 2020 arXiv:2012.09097 [cond-mat.supr-con]
[17] Yin Q W, Tu Z J, Gong C S, Fu Y, Yan S H, and Lei H C 2021 Chin. Phys. Lett. 38 037403
[18] Ortiz B R, Teicher S M L, Hu Y, Zuo J L, Sarte P M, Schueller E C, Abeykoon A M M, Krogstad M J, Rosenkranz S, Osborn R, Seshadri R, Balents L, He J F, and Wilson S D 2020 Phys. Rev. Lett. 125 247002
[19] Zhao H, Li H, Ortiz B R, Teicher S M L, Park T, Ye M, Wang Z, Balents L, Wilson S D, and Zeljkovic I 2021 arXiv:2103.03118 [cond-mat.supr-con]
[20] Chen H, Yang H T, Hu B, Zhao Z, Yuan J, Xing Y Q, Qian G J, Huang Z H, Li G, Ye Y H, Yin Q W, Gong C S, Tu Z J, Lei H C, Ma S, Zhang H, Ni S L, Tan H X, Shen C M, Dong X L, Yan B H, Wang Z Q, and Gao H J 2021 arXiv:2103.09188 [cond-mat.supr-con]
[21] Jiang Y X, Yin J X, Denner M M, Shumiya N, Ortiz B R, He J, Liu X, Zhang S S, Chang G, Belopolski I, Zhang Q, Hossain M S, Cochran T A, Multer D, Litskevich M, Cheng Z J, Yang X P, Guguchia Z, Xu G, Wang Z, Neupert T, Wilson S D, and Hasan M Z 2020 arXiv:2012.15709 [cond-mat.supr-con]
[22] Li H X, Zhang T T, Pai Y Y, Marvinney C, Said A, Yilmaz T, Yin Q, Gong C, Tu Z, Vescovo E, Moore R G, Murakami S, Lei H C, Lee H N, Lawrie B, and Miao H 2021 arXiv:2103.09769 [cond-mat.supr-con]
[23] Liang Z W, Hou X Y, Ma W R, Zhang F, Wu P, Zhang Z Y, Yu F H, Ying J J, Jiang K, Shan L, Wang Z Y, and Chen X H 2021 arXiv:2103.04760 [cond-mat.supr-con]
[24] Yang S Y, Wang Y J, Ortiz B R et al. 2020 Sci. Adv. 6 eabb6003
[25] Yu F H, Wu T, Wang Z Y, Lei B, Zhuo W Z, Ying J J, and Chen X H 2021 arXiv:2102.10987 [cond-mat.supr-con]
[26] Kenney E M, Ortiz B R, Wang C, Wilson S D, and Graf M J 2021 J. Phys.: Condens. Matter (in press)
[27] Zhao C C, Wang L S, Xia W, Yin Q W, Ni J M, Huang Y Y, Tu C P, Tao Z C, Tu Z J, Gong C S, Lei H C, Guo Y F, Yang X F, and Li S Y 2021 arXiv:2102.08356 [cond-mat.supr-con]
[28] Wang Y, Yang S, Sivakumar P K, Ortiz B R, Teicher S M L, Wu H, Srivastava A K, Garg C, Liu D, Parkin S S P, Toberer E S, McQueen T, Wilson S D, and Ali M N 2020 arXiv:2012.05898 [cond-mat.supr-con]
[29] Wu M K, Ashburn J R, Torng C J, Hor P H, Meng R L, Gao L, Huang Z J, Wang Y Q, and Chu C W 1987 Phys. Rev. Lett. 58 908
[30] Eggert J H, Hu J Z, Mao H K, Beauvais L, Meng R L, and Chu C W 1994 Phys. Rev. B 49 15299
[31] Jia Y T, Gong C S, Liu Y X et al. 2020 Chin. Phys. Lett. 37 097404
[32] Takahashi H, Igawa K, Arii K, Kamihara Y, Hirano M, and Hosono H 2008 Nature 453 376
[33] Sun L L, Chen X J, Guo J, Gao P W, Huang Q Z, Wang H D, Fang M H, Chen X L, Chen G F, Wu Q, Zhang C, Gu D C, Dong X L, Wang L, Yang K, Li A G, Dai X, Mao H K, and Zhao Z X 2012 Nature 483 67
[34] Liu Z Y, Dong Q X, Shan P F et al. 2020 Chin. Phys. Lett. 37 047102
[35] Chen K Y, Wang N N, Yin Q W, Tu Z J, Gong C S, Sun J P, Lei H C, Uwatoko Y, and Cheng J G 2021 arXiv:2102.09328 [cond-mat.supr-con]
[36] Zhang Z Y, Chen Z, Zhou Y, Yuan Y F, Wang S Y, Zhang L L, Zhu X D, Zhou Y H, Chen X L, Zhou J H, and Yang Z R 2021 arXiv:2103.12507 [cond-mat.supr-con]
[37] Kohn W and Sham L J 1965 Phys. Rev. 140 A1133
[38] Lich H L 1989 Phys. Rev. Lett. 62 1201
[39] Vladimir I, Anisimov J Z, and Ole K 1991 Phys. Rev. B 44 943
[40] Kresse G and Furthmüller J 1996 Comput. Mater. Sci. 6 15
[41] Kresse G, Furthmüller J, and Hafner J 1994 Phys. Rev. B 50 13181
[42] Payne M C, Teter M P, Allan D C, Arias T, and Joannopoulos A J 1992 Rev. Mod. Phys. 64 1045
[43] Perdew J P, Burke K, and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[44] Parlinski K, Li Z Q, and Kawazoe Y 1997 Phys. Rev. Lett. 78 4063
[45] Deringer V L, Tchougréeff A L, and Dronskowski R 2011 J. Phys. Chem. A 115 5461
[46] Maintz S, Deringer V L, Tchougreeff A L, and Dronskowski R 2016 J. Comput. Chem. 7 1030
[47] Sun J P, Shahi P, Zhou H X, Huang Y L, Chen K Y, Wang B S, Ni S L, Li N N, Zhang K, Yang W G, Uwatoko Y, Xing G, Sun J, Singh D J, Jin K, Zhou F, Zhang G M, Dong X L, Zhao Z X, and Cheng J G 2018 Nat. Commun. 9 380
[48] Shahi P, Sun J P, Wang S H, Jiao Y Y, Chen K Y, Sun S S, Lei H C, Uwatoko Y, Wang B S, and Cheng J G 2018 Phys. Rev. B 97 020508(R)
[49] Guo J, Chen X J, Dai J H, Zhang C, Guo J G, Chen X L, Wu Q, Gu D C, Gao P W, Yang L H, Yang K, Dai X, Mao H K, Sun L L, and Zhao Z X 2012 Phys. Rev. Lett. 108 197001
[50] Huang C, Guo J, Zhao K, Cui F, Qin S S, Mu Q G, Zhou Y Z, Cai S, Yang C L, Long S J, Yang K, Li A G, Wu Q, Ren Z A, Hu J P, and Sun L L 2021 Phys. Rev. Mater. 5 L021801
[51] Nakatsuji S, Kuga K, Machida Y, Tayama T, Sakakibara T, Karaki Y, Ishimoto H, Yonezawa S, Maeno Y, Pearson E, Lonzarich G G, Balicas L, Lee H, and Fisk Z 2008 Nat. Phys. 4 603
[52] Luo Y, Pourovskii L, Rowley S E, Li Y, Feng C, Georges A, Dai J, Cao G, Xu Z, Si Q, and Ong N P 2014 Nat. Mater. 13 777
[53] Amon A, Svanidze E, Cardoso-Gil R, Wilson M N, Rosner H, Bobnar M, Schnelle W, Lynn J W, Gumeniuk R, Hennig C, Luke G M, Borrmann H, Leithe-Jasper A, and Grin Y 2018 Phys. Rev. B 97 014501
[54] Tan H, Liu Y Z, Wang Z Q, and Yan B H 2021 arXiv:2103.06325 [cond-mat.supr-con]
[55] Pei C Y, Xia Y Y Y, Wu J Z et al. 2020 Chin. Phys. Lett. 37 066401
[56] Schoop L M, Xie L S, Chen R, Gibson Q D, Lapidus S H, Kimchi I, Hirschberger M, Haldolaarachchige N, Ali M N, Belvin C A, Liang T, Neaton J B, Ong N P, Vishwanath A, and Cava R J 2015 Phys. Rev. B 91 214517
[57] Nayak J, Wu S C, Kumar N, Shekhar C, Singh S, Fink J, Rienks E E, Fecher G H, Parkin S S, Yan B H, and Felser C 2017 Nat. Commun. 8 13942
Related articles from Frontiers Journals
[1] Mebrouka Boubeche, Jia Yu, Li Chushan, Wang Huichao, Lingyong Zeng, Yiyi He, Xiaopeng Wang, Wanzhen Su, Meng Wang, Dao-Xin Yao, Zhijun Wang, and Huixia Luo. Superconductivity and Charge Density Wave in Iodine-Doped CuIr$_{2}$Te$_{4}$[J]. Chin. Phys. Lett., 2021, 38(3): 057402
[2] Jiayu Ma, Junlin Kuang, Wenwen Cui, Ju Chen, Kun Gao, Jian Hao, Jingming Shi, and Yinwei Li. Metal-Element-Incorporation Induced Superconducting Hydrogen Clathrate Structure at High Pressure[J]. Chin. Phys. Lett., 2021, 38(2): 057402
[3] Ya-Ting Jia, Chun-Sheng Gong, Yi-Xuan Liu, Jian-Fa Zhao, Cheng Dong, Guang-Yang Dai, Xiao-Dong Li, He-Chang Lei, Run-Ze Yu, Guang-Ming Zhang, and Chang-Qing Jin. Mott Transition and Superconductivity in Quantum Spin Liquid Candidate NaYbSe$_{2}$[J]. Chin. Phys. Lett., 2020, 37(9): 057402
[4] Kaiyao Zhou, Jun Deng, Liwei Guo, and Jiangang Guo. Tunable Superconductivity in 2H-NbSe$_{2}$ via $\boldsymbol In~Situ$ Li Intercalation[J]. Chin. Phys. Lett., 2020, 37(9): 057402
[5] Cong-Ying Jiang, Hai-Ying Song, T. Xie, C. Liu, H. Q. Luo, S. Z. Zhao, Xiu Zhang, X. C. Nie, Jian-Qiao Meng, Yu-Xia Duan, H. Y. Liu, Shi-Bing Liu. Time-Resolved Study of Pseudogap and Superconducting Quasiparticle Dynamics in Ca$_{0.82}$La$_{0.18}$Fe$_{1-x}$Ni$_{x}$As$_{2}$ *[J]. Chin. Phys. Lett., 0, (): 057402
[6] Cong-Ying Jiang, Hai-Ying Song, T. Xie, C. Liu, H. Q. Luo, S. Z. Zhao, Xiu Zhang, X. C. Nie, Jian-Qiao Meng, Yu-Xia Duan, H. Y. Liu, Shi-Bing Liu. Time-Resolved Study of Pseudogap and Superconducting Quasiparticle Dynamics in Ca$_{0.82}$La$_{0.18}$Fe$_{1-x}$Ni$_{x}$As$_{2}$[J]. Chin. Phys. Lett., 2020, 37(6): 057402
[7] Qijin Chen, Jibiao Wang, Lin Sun, Yi Yu. Unusual Destruction and Enhancement of Superfluidity of Atomic Fermi Gases by Population Imbalance in a One-Dimensional Optical Lattice[J]. Chin. Phys. Lett., 2020, 37(5): 057402
[8] Ya-Ting Jia, Jian-Fa Zhao, Si-Jia Zhang, Shuang Yu, Guang-Yang Dai, Wen-Min Li, Lei Duan, Guo-Qiang Zhao, Xian-Cheng Wang, Xu Zheng, Qing-Qing Liu, You-Wen Long, Zhi Li, Xiao-Dong Li, Hong-Ming Weng, Run-Ze Yu, Ri-Cheng Yu, Chang-Qing Jin. Superconductivity in Topological Semimetal $\theta$-TaN at High Pressure[J]. Chin. Phys. Lett., 2019, 36(8): 057402
[9] Yiyuan Mao, Jun Li, Yulong Huan, Jie Yuan, Zi-an Li, Ke Chai, Mingwei Ma, Shunli Ni, Jinpeng Tian, Shaobo Liu, Huaxue Zhou, Fang Zhou, Jianqi Li, Guangming Zhang, Kui Jin, Xiaoli Dong, Zhongxian Zhao. Electronic Phase Separation in Iron Selenide (Li,Fe)OHFeSe Superconductor System[J]. Chin. Phys. Lett., 2018, 35(5): 057402
[10] ZHOU Da-Wei, PU Chun-Ying, Szczęániak Dominik, ZHANG Guo-Fang, LU Cheng, LI Gen-Quan, SONG Jin-Fan. The Predicted fcc Superconducting Phase for Compressed Se and Te[J]. Chin. Phys. Lett., 2013, 30(2): 057402
[11] ZHAO Juan, FENG Wan-Xiang, LIU Zhi-Ming, MA Yan-Ming, HE Zhi, CUI Tian, ZOU Guang-Tian. Structural Investigation of Solid Methane at High Pressure[J]. Chin. Phys. Lett., 2010, 27(6): 057402
[12] LI Yu-ke, LIN Xiao, TAO Qian, CHEN Hang, WANG Cao, LI Lin-Jun, LUO Yong-Kang, HE Mi, ZHU Zeng-Wei, CAO Gang-Han, XU Zhu-An. Superconductivity and Transport Properties in Th and F Codoped Sm1-xThxFeAsO1-yFy[J]. Chin. Phys. Lett., 2009, 26(1): 057402
[13] LIU Zhi-Yong, YANG Hai-Peng, LU Xi-Feng, ZHOU Fang, WEN Hai-Hu. Low Temperature Specific Heat of the Underdoped La2-xSrxCuO4 Single Crystals[J]. Chin. Phys. Lett., 2004, 21(2): 057402
[14] SONG Bo, , WANG Yu-Peng. The Green Function Approach to the Two-Dimensional t-J model[J]. Chin. Phys. Lett., 2003, 20(2): 057402
[15] GUO Wei, HAN Ru-Shan, ZHENG Yi. Electron Spin Pairing and Excitations in High-Tc Superconductors[J]. Chin. Phys. Lett., 2002, 19(11): 057402
Viewed
Full text


Abstract