Chin. Phys. Lett.  2021, Vol. 38 Issue (4): 047502    DOI: 10.1088/0256-307X/38/4/047502
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Rare-Earth Chalcohalides: A Family of van der Waals Layered Kitaev Spin Liquid Candidates
Jianting Ji1†, Mengjie Sun1,2†, Yanzhen Cai3, Yimeng Wang1,2, Yingqi Sun1,2, Wei Ren3, Zheng Zhang1,2, Feng Jin1, and Qingming Zhang3,1*
1Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
2Department of Physics, Renmin University of China, Beijing 100872, China
3School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, China
Cite this article:   
Jianting Ji, Mengjie Sun, Yanzhen Cai et al  2021 Chin. Phys. Lett. 38 047502
Download: PDF(2506KB)   PDF(mobile)(2505KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The Kitaev spin liquid (KSL) system has attracted tremendous attention in recent years because of its fundamental significance in condensed matter physics and promising applications in fault-tolerant topological quantum computation. Material realization of such a system remains a major challenge in the field due to the unusual configuration of anisotropic spin interactions, though great effort has been made before. Here we reveal that rare-earth chalcohalides REChX (RE = rare earth; Ch = O, S, Se, Te; X = F, Cl, Br, I) can serve as a family of KSL candidates. Most family members have the typical SmSI-type structure with a high symmetry of $R\bar{3}m$, and rare-earth magnetic ions form an undistorted honeycomb lattice. The strong spin-orbit coupling of $4f$ electrons intrinsically offers anisotropic spin interactions as required by the Kitaev model. We have grown the crystals of YbOCl and synthesized the polycrystals of SmSI, ErOF, HoOF and DyOF, and made careful structural characterizations. We carry out magnetic and heat capacity measurements down to 1.8 K and find no obvious magnetic transition in all the samples but DyOF. The van der Waals interlayer coupling highlights the true two-dimensionality of the family which is vital for the exact realization of Abelian/non-Abelian anyons, and the graphene-like feature will be a prominent advantage for developing miniaturized devices. The family is expected to act as an inspiring material platform for the exploration of KSL physics.
Received: 09 March 2021      Published: 02 April 2021
PACS:  75.10.Kt (Quantum spin liquids, valence bond phases and related phenomena)  
  75.30.Gw (Magnetic anisotropy)  
  75.40.Cx (Static properties (order parameter, static susceptibility, heat capacities, critical exponents, etc.))  
  71.70.Ej (Spin-orbit coupling, Zeeman and Stark splitting, Jahn-Teller effect)  
Fund: Supported by the National Key Research and Development Program of China (Grant Nos. 2017YFA0302904 and 2016YFA0300504), the National Natural Science Founation of China (Grant Nos. U1932215 and 11774419), and the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB33010100).
TRENDMD:   
URL:  
http://cpl.iphy.ac.cn/10.1088/0256-307X/38/4/047502       OR      http://cpl.iphy.ac.cn/Y2021/V38/I4/047502
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Jianting Ji
Mengjie Sun
Yanzhen Cai
Yimeng Wang
Yingqi Sun
Wei Ren
Zheng Zhang
Feng Jin
and Qingming Zhang
[1] Anderson P W 1973 Mater. Res. Bull. 8 153
[2] Kitaev A 2006 Ann. Phys. 321 2
[3] Chen G and Balents L 2008 Phys. Rev. B 78 094403
[4] Jackeli G and Khaliullin G 2009 Phys. Rev. Lett. 102 017205
[5] Kobayashi H, Tabuchi M, Shikano M, Kageyama H and Kanno R 2003 J. Mater. Chem. 13 957
[6] Singh Y and Gegenwart P 2010 Phys. Rev. B 82 064412
[7] Abramchuk M, Ozsoy-Keskinbora C, Krizan J W, Metz K R, Bell D C and Tafti F 2017 J. Am. Chem. Soc. 139 15371
[8] Todorova V, Leineweber A, Kienle L, Duppel V and Jansen M 2011 J. Solid State Chem. 184 1112
[9] Roudebush J H, Ross K A and Cava R J 2016 Dalton Trans. 45 8783
[10] Kitagawa K, Takayama T, Matsumoto Y, Kato A, Takano R, Kishimoto Y, Bette S, Dinnebier R, Jackeli G and Takagi H 2018 Nature 554 341
[11] Khuntia P, Manni S, Foronda F R, Lancaster T, Blundell S J, Gegenwart P and Baenitz M 2017 Phys. Rev. B 96 094432
[12] Kobayashi Y, Okada T, Asai K, Katada M, Sano H and Ambe F 1992 Inorg. Chem. 31 4570
[13] Plumb K W, Clancy J P, Sandilands L J, Shankar V V, Hu Y F, Burch K S, Kee H Y and Kim Y J 2014 Phys. Rev. B 90 041112
[14] Sears J A, Songvilay M, Plumb K W, Clancy J P, Qiu Y, Zhao Y, Parshall D and Kim Y J 2015 Phys. Rev. B 91 144420
[15] Majumder M, Schmidt M, Rosner H, Tsirlin A A, Yasuoka H and Baenitz M 2015 Phys. Rev. B 91 180401
[16] Cao H B, Banerjee A, Yan J Q, Bridges C A, Lumsden M D, Mandrus D G, Tennant D A, Chakoumakos B C and Nagler S E 2016 Phys. Rev. B 93 134423
[17] Janssen L, Andrade E C and Vojta M 2017 Phys. Rev. B 96 064430
[18] Banerjee A, Yan J, Knolle J, Bridges C A, Stone M B, Lumsden M D, Mandrus D G, Tennant D A, Moessner R and Nagler S E 2017 Science 356 1055
[19] Kasahara Y, Ohnishi T, Mizukami Y, Tanaka O, Ma S, Sugii K, Kurita N, Tanaka H, Nasu J, Motome Y, Shibauchi T and Matsuda Y 2018 Nature 559 227
[20] Xing J, Feng E, Liu Y, Emmanouilidou E, Hu C, Liu J, Graf D, Ramirez A P, Chen G, Cao H and Ni N 2020 Phys. Rev. B 102 014427
[21] Kataoka K, Hirai D, Yajima T, Nishio-Hamane D, Ishii R, Choi K Y, Wulferding D, Lemmens P, Kittaka S, Sakakibara T, Ishikawa H, Matsuo A, Kindo K and Hiroi Z 2020 Phys. Soc. Jpn. 89 114709
[22] Li F Y, Li Y D, Yu Y, Paramekanti A and Chen G 2017 Phys. Rev. B 95 085132
[23] Morita K, Kishimoto M and Tohyama T 2018 Phys. Rev. B 98 134437
[24] Luo Z X and Chen G 2020 SciPost Phys. Core 3 004
[25] Li Y, Liao H, Zhang Z, Li S, Jin F, Ling L, Zhang L, Zou Y, Pi L, Yang Z, Wang J, Wu Z and Zhang Q 2015 Sci. Rep. 5 16419
[26] Li Y, Chen G, Tong W, Pi L, Liu J, Yang Z, Wang X and Zhang Q 2015 Phys. Rev. Lett. 115 167203
[27] Liu W, Zhang Z, Ji J, Liu Y, Li J, Wang X, Lei H, Chen G and Zhang Q 2018 Chin. Phys. Lett. 35 117501
[28] Brandt G and Diehl R 1974 Mater. Res. Bull. 9 411
[29] Savigny N, Laruelle P and Flahaut J 1973 Acta Crystallogr. B 29 345
[30] Beck H P and Strobel C 1986 Z. Anorg. Allg. Chem. 535 229
[31] Podberezskaya N V, Batsanova L R and Egorova L S 1966 J. Struct. Chem. 6 815
[32] Zhang Z, Ma X, Li J, Wang G, Adroja D T, Perring T P, Liu W, Jin F, Ji J, Wang Y, Kamiya Y, Wang X, Ma J and Zhang Q 2021 Phys. Rev. B 103 035144
[33] Li Y, Adroja D, Bewley R I, Voneshen D, Tsirlin A A, Gegenwart P and Zhang Q 2017 Phys. Rev. Lett. 118 107202
[34] Sears J A, Chern L E, Kim S, Bereciartua P J, Francoual S, Kim Y B and Kim Y J 2020 Nat. Phys. 16 837
[35] Rau J G, Lee E K H and Kee H Y 2014 Phys. Rev. Lett. 112 077204
[36] Gao Y H, Hickey C, Xiang T, Trebst S and Chen G 2019 Phys. Rev. Res. 1 013014
Related articles from Frontiers Journals
[1] J.-J. Wen, Y. S. Lee. The Search for the Quantum Spin Liquid in Kagome Antiferromagnets[J]. Chin. Phys. Lett., 2019, 36(5): 047502
[2] Zili Feng, Wei Yi, Kejia Zhu, Yuan Wei, Shanshan Miao, Jie Ma, Jianlin Luo, Shiliang Li, Zi Yang Meng, Youguo Shi. From Claringbullite to a New Spin Liquid Candidate Cu$_3$Zn(OH)$_6$FCl[J]. Chin. Phys. Lett., 2019, 36(1): 047502
[3] Weiwei Liu, Zheng Zhang, Jianting Ji, Yixuan Liu, Jianshu Li, Xiaoqun Wang, Hechang Lei, Gang Chen, Qingming Zhang. Rare-Earth Chalcogenides: A Large Family of Triangular Lattice Spin Liquid Candidates[J]. Chin. Phys. Lett., 2018, 35(11): 047502
[4] Zili Feng, Zheng Li, Xin Meng, Wei Yi, Yuan Wei, Jun Zhang, Yan-Cheng Wang, Wei Jiang, Zheng Liu, Shiyan Li, Feng Liu, Jianlin Luo, Shiliang Li, Guo-qing Zheng, Zi Yang Meng, Jia-Wei Mei, Youguo Shi. Gapped Spin-1/2 Spinon Excitations in a New Kagome Quantum Spin Liquid Compound Cu$_3$Zn(OH)$_6$FBr [J]. Chin. Phys. Lett., 2017, 34(7): 047502
Viewed
Full text


Abstract