CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Spin-Wave Dynamics in an Artificial Kagome Spin Ice |
Qiuyang Li1, Suqin Xiong1, Lina Chen2*, Kaiyuan Zhou3, Rongxin Xiang3, Haotian Li3, Zhenyu Gao3, Ronghua Liu3*, and Youwei Du3 |
1China Electric Power Research Institute, Beijing 100192, China 2School of Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, China 3School of Physics, Nanjing University, Nanjing 210093, China
|
|
Cite this article: |
Qiuyang Li, Suqin Xiong, Lina Chen et al 2021 Chin. Phys. Lett. 38 047501 |
|
|
Abstract Artificial spin ice (ASI) structures have significant technological potential as reconfigurable metamaterials and magnetic storage media. We investigate the field/frequency-dependent magnetic dynamics of a kagome ASI made of 25-nm-thick permalloy nanomagnet elements, combining magnetoresistance (MR) and microscale ferromagnetic resonance (FMR) techniques. Our FMR spectra show a broadband absorption spectrum from 0.2 GHz to 3 GHz at $H$ below 0.3 kOe, where the magnetic configuration of the kagome ASI is in the multidomain state, because the external magnetic field is below the obtained coercive field $H_{\rm c} \sim 0.3$ kOe, based on both the low-field range MR loops and simulations, suggesting that the low-field magnetization dynamics of kagome ASI is dominated by a multimode resonance regime. However, the FMR spectra exhibit five distinctive resonance modes at the high-field quasi-uniform magnetization state. Furthermore, our micromagnetic simulations provide additional spatial resolution of these resonance modes, identifying the presence of two high-frequency primary modes, localized in the horizontal and vertical bars of the ASI, respectively; three other low-frequency modes are mutually exclusive and separately pinned at the corners of the kagome ASI by an edge-induced dipolar field. Our results suggest that an ASI structural design can be adopted as an efficient approach for the development of low-power filters and magnonic devices.
|
|
Received: 23 November 2020
Published: 06 April 2021
|
|
PACS: |
76.50.+g
|
(Ferromagnetic, antiferromagnetic, and ferrimagnetic resonances; spin-wave resonance)
|
|
75.30.Ds
|
(Spin waves)
|
|
75.78.Fg
|
(Dynamics of domain structures)
|
|
75.60.Ch
|
(Domain walls and domain structure)
|
|
|
Fund: Supported by the State Grid Corporation of China via the Science and Technology Project: Research on Electromagnetic Measurement Technology Based on EIT and TMR (Grant No. JL71-18-007). |
|
|
[1] | Wang R F, Nisoli C, Freitas R S, Li J, McConville W, Cooley B J, Lund M S, Samarth N, Leighton C, Crespi V H and Schiffe P 2006 Nature 439 303 |
[2] | Castelnovo C, Moessner R and Sondhi S L 2008 Nature 451 42 |
[3] | Morgan J P, Stein A, Langridge S and Marrows C H 2011 Nat. Phys. 7 75 |
[4] | Nisoli C, Moessner R and Schiffer P 2013 Rev. Mod. Phys. 85 1473 |
[5] | Skjaervo S H, Marrows C H, Stamps R L and Heyderman L J 2020 Nat. Rev. Phys. 2 13 |
[6] | Gliga S, Iacocca E and Heinonen O G 2020 APL Mater. 8 040911 |
[7] | Farhan A, Derlet P M, Kleibert A, Balan A, Chopdekar R V, Wyss M, Perron J, Scholl A, Nolting F and Heyderman L J 2013 Phys. Rev. Lett. 111 057204 |
[8] | Gliga S, Hrkac G, Donnelly C, Buchi J, Kleibert A, Cui J, Farhan A, Kirk E, Chopdekar R V, Masaki Y, Bingham N S, Scholl A, Stamps R L and Heyderman L J 2017 Nat. Mater. 16 1106 |
[9] | Wang Y L, Xiao Z L, Snezhko A, Xu J, Ocola L E, Divan R J, Pearson E, Crabtree G W and Kwok W K 2016 Science 352 962 |
[10] | Nisoli C, Kapaklis V and Schiffer P 2017 Nat. Phys. 13 200 |
[11] | Xie Y L, Du Z Z, Yan Z B and Liu J M 2015 Sci. Rep. 5 15875 |
[12] | Canals B, Chioar I A, Nguyen V D, Hehn M, Lacour D, Montaigne F, Locatelli A, Mentes T O, Burgos B S and Rougemaille N 2016 Nat. Commun. 7 11446 |
[13] | Zhao K, Deng H, Chen H, Ross K A, Petříček V, Günther G, Russina M, Hutanu V and Gegenwart P 2020 Science 367 1218 |
[14] | Gilbert I, Chern G W, Zhang S, O'Brien S L, Fore B, Nisoli C and Schiffer P 2014 Nat. Phys. 10 670 |
[15] | Saccone M, Hofhuis K, Huang Y L, Dhuey S, Chen Z, Scholl A, Chopdekar R V, van Dijken S and Farhan A 2019 Phys. Rev. Mater. 3 104402 |
[16] | Sklenar J, Lao Y, Albrecht A, Watts J D, Nisoli C, Chern G W and Schiffer P 2019 Nat. Phys. 15 191 |
[17] | Zhou X, Chua G L, Singh N and Adeyeye A O 2016 Adv. Funct. Mater. 26 1437 |
[18] | Bhat V S, Heimbach F, Stasinopoulos I and Grundler D 2017 Phys. Rev. B 96 014426 |
[19] | Talapatra A, Singh N and Adeyeye A O 2020 Phys. Rev. Appl. 13 014034 |
[20] | Bhat V S, Watanabe S, Baumgaertl K, Kleibert A, Schoen M A W, Vaz C A F and Grundler D 2020 Phys. Rev. Lett. 125 117208 |
[21] | Fu Q W, Li Y, Chen L N, Ma F S, Li H T, Xu Y B, Liu B, Liu R H and Du Y W 2020 Chin. Phys. Lett. 37 087503 |
[22] | Vansteenkiste A, Leliaert J, Dvornik M, Helsen M, Garcia-Sanchez F, Van Waeyenberge B 2014 AIP Adv. 4 107133 |
[23] | Liu R H, Lim W L and Urazhdin S 2013 Phys. Rev. Lett. 110 147601 |
[24] | Eijkel K J 1988 IEEE Trans. Magn. 24 1957 |
[25] | Bailleul M, Holinger R and Fermon C 2006 Phys. Rev. B 73 104424 |
[26] | Zhang G F, Li Z X, Wang X G, Nie Y Z and Guo G H 2015 Chin. Phys. B 24 097503 |
[27] | Kruglyak V V, Demokritov S O and Grundler D 2010 J. Phys. D 43 264001 |
[28] | Li L Y, Chen L N, Liu R H and Du Y W 2020 Chin. Phys. B 29 117102 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|