Chin. Phys. Lett.  2021, Vol. 38 Issue (4): 047501    DOI: 10.1088/0256-307X/38/4/047501
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Spin-Wave Dynamics in an Artificial Kagome Spin Ice
Qiuyang Li1, Suqin Xiong1, Lina Chen2*, Kaiyuan Zhou3, Rongxin Xiang3, Haotian Li3, Zhenyu Gao3, Ronghua Liu3*, and Youwei Du3
1China Electric Power Research Institute, Beijing 100192, China
2School of Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
3School of Physics, Nanjing University, Nanjing 210093, China
Cite this article:   
Qiuyang Li, Suqin Xiong, Lina Chen et al  2021 Chin. Phys. Lett. 38 047501
Download: PDF(1066KB)   PDF(mobile)(1060KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Artificial spin ice (ASI) structures have significant technological potential as reconfigurable metamaterials and magnetic storage media. We investigate the field/frequency-dependent magnetic dynamics of a kagome ASI made of 25-nm-thick permalloy nanomagnet elements, combining magnetoresistance (MR) and microscale ferromagnetic resonance (FMR) techniques. Our FMR spectra show a broadband absorption spectrum from 0.2 GHz to 3 GHz at $H$ below 0.3 kOe, where the magnetic configuration of the kagome ASI is in the multidomain state, because the external magnetic field is below the obtained coercive field $H_{\rm c} \sim 0.3$ kOe, based on both the low-field range MR loops and simulations, suggesting that the low-field magnetization dynamics of kagome ASI is dominated by a multimode resonance regime. However, the FMR spectra exhibit five distinctive resonance modes at the high-field quasi-uniform magnetization state. Furthermore, our micromagnetic simulations provide additional spatial resolution of these resonance modes, identifying the presence of two high-frequency primary modes, localized in the horizontal and vertical bars of the ASI, respectively; three other low-frequency modes are mutually exclusive and separately pinned at the corners of the kagome ASI by an edge-induced dipolar field. Our results suggest that an ASI structural design can be adopted as an efficient approach for the development of low-power filters and magnonic devices.
Received: 23 November 2020      Published: 06 April 2021
PACS:  76.50.+g (Ferromagnetic, antiferromagnetic, and ferrimagnetic resonances; spin-wave resonance)  
  75.30.Ds (Spin waves)  
  75.78.Fg (Dynamics of domain structures)  
  75.60.Ch (Domain walls and domain structure)  
Fund: Supported by the State Grid Corporation of China via the Science and Technology Project: Research on Electromagnetic Measurement Technology Based on EIT and TMR (Grant No. JL71-18-007).
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/38/4/047501       OR      https://cpl.iphy.ac.cn/Y2021/V38/I4/047501
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Qiuyang Li
Suqin Xiong
Lina Chen
Kaiyuan Zhou
Rongxin Xiang
Haotian Li
Zhenyu Gao
Ronghua Liu
and Youwei Du
[1] Wang R F, Nisoli C, Freitas R S, Li J, McConville W, Cooley B J, Lund M S, Samarth N, Leighton C, Crespi V H and Schiffe P 2006 Nature 439 303
[2] Castelnovo C, Moessner R and Sondhi S L 2008 Nature 451 42
[3] Morgan J P, Stein A, Langridge S and Marrows C H 2011 Nat. Phys. 7 75
[4] Nisoli C, Moessner R and Schiffer P 2013 Rev. Mod. Phys. 85 1473
[5] Skjaervo S H, Marrows C H, Stamps R L and Heyderman L J 2020 Nat. Rev. Phys. 2 13
[6] Gliga S, Iacocca E and Heinonen O G 2020 APL Mater. 8 040911
[7] Farhan A, Derlet P M, Kleibert A, Balan A, Chopdekar R V, Wyss M, Perron J, Scholl A, Nolting F and Heyderman L J 2013 Phys. Rev. Lett. 111 057204
[8] Gliga S, Hrkac G, Donnelly C, Buchi J, Kleibert A, Cui J, Farhan A, Kirk E, Chopdekar R V, Masaki Y, Bingham N S, Scholl A, Stamps R L and Heyderman L J 2017 Nat. Mater. 16 1106
[9] Wang Y L, Xiao Z L, Snezhko A, Xu J, Ocola L E, Divan R J, Pearson E, Crabtree G W and Kwok W K 2016 Science 352 962
[10] Nisoli C, Kapaklis V and Schiffer P 2017 Nat. Phys. 13 200
[11] Xie Y L, Du Z Z, Yan Z B and Liu J M 2015 Sci. Rep. 5 15875
[12] Canals B, Chioar I A, Nguyen V D, Hehn M, Lacour D, Montaigne F, Locatelli A, Mentes T O, Burgos B S and Rougemaille N 2016 Nat. Commun. 7 11446
[13] Zhao K, Deng H, Chen H, Ross K A, Petříček V, Günther G, Russina M, Hutanu V and Gegenwart P 2020 Science 367 1218
[14] Gilbert I, Chern G W, Zhang S, O'Brien S L, Fore B, Nisoli C and Schiffer P 2014 Nat. Phys. 10 670
[15] Saccone M, Hofhuis K, Huang Y L, Dhuey S, Chen Z, Scholl A, Chopdekar R V, van Dijken S and Farhan A 2019 Phys. Rev. Mater. 3 104402
[16] Sklenar J, Lao Y, Albrecht A, Watts J D, Nisoli C, Chern G W and Schiffer P 2019 Nat. Phys. 15 191
[17] Zhou X, Chua G L, Singh N and Adeyeye A O 2016 Adv. Funct. Mater. 26 1437
[18] Bhat V S, Heimbach F, Stasinopoulos I and Grundler D 2017 Phys. Rev. B 96 014426
[19] Talapatra A, Singh N and Adeyeye A O 2020 Phys. Rev. Appl. 13 014034
[20] Bhat V S, Watanabe S, Baumgaertl K, Kleibert A, Schoen M A W, Vaz C A F and Grundler D 2020 Phys. Rev. Lett. 125 117208
[21] Fu Q W, Li Y, Chen L N, Ma F S, Li H T, Xu Y B, Liu B, Liu R H and Du Y W 2020 Chin. Phys. Lett. 37 087503
[22] Vansteenkiste A, Leliaert J, Dvornik M, Helsen M, Garcia-Sanchez F, Van Waeyenberge B 2014 AIP Adv. 4 107133
[23] Liu R H, Lim W L and Urazhdin S 2013 Phys. Rev. Lett. 110 147601
[24] Eijkel K J 1988 IEEE Trans. Magn. 24 1957
[25] Bailleul M, Holinger R and Fermon C 2006 Phys. Rev. B 73 104424
[26] Zhang G F, Li Z X, Wang X G, Nie Y Z and Guo G H 2015 Chin. Phys. B 24 097503
[27] Kruglyak V V, Demokritov S O and Grundler D 2010 J. Phys. D 43 264001
[28] Li L Y, Chen L N, Liu R H and Du Y W 2020 Chin. Phys. B 29 117102
Viewed
Full text


Abstract