Chin. Phys. Lett.  2021, Vol. 38 Issue (11): 117302    DOI: 10.1088/0256-307X/38/11/117302
Influence of Device Geometry on Transport Properties of Topological Insulator Microflakes
Fan Gao1,2 and Yongqing Li1,2,3,4*
1Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
2School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
3Songshan Lake Materials Laboratory, Dongguan 523808, China
4CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100190, China
Cite this article:   
Fan Gao and Yongqing Li 2021 Chin. Phys. Lett. 38 117302
Download: PDF(1147KB)   PDF(mobile)(1730KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract In the transport studies of topological insulators, microflakes exfoliated from bulk single crystals are often used because of the convenience in sample preparation and the accessibility to high carrier mobilities. Here, based on finite element analysis, we show that for the non-Hall-bar shaped topological insulator samples, the measured four-point resistances can be substantially modified by the sample geometry, bulk and surface resistivities, and magnetic field. Geometry correction factors must be introduced for accurately converting the four-point resistances to the longitudinal resistivity and Hall resistivity. The magnetic field dependence of inhomogeneous current density distribution can lead to pronounced positive magnetoresistance and nonlinear Hall effect that would not exist in the samples of ideal Hall bar geometry.
Received: 22 August 2021      Editors' Suggestion Published: 27 October 2021
PACS:  73.63.-b (Electronic transport in nanoscale materials and structures)  
  73.20.-r (Electron states at surfaces and interfaces)  
  73.43.Qt (Magnetoresistance)  
Fund: Supported by the National Natural Science Foundation of China (Grant No. 11961141011), the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB28000000), and the National Key Research and Development Program of China (Grant No. 2016YFA0300600).
URL:       OR
E-mail this article
E-mail Alert
Articles by authors
Fan Gao and Yongqing Li
[1] Hasan M Z and Kane C L 2010 Rev. Mod. Phys. 82 3045
[2] Qi X L and Zhang S C 2011 Rev. Mod. Phys. 83 1057
[3] Ando Y 2013 J. Phys. Soc. Jpn. 82 102001
[4] Culcer D, Cem K A, Li Y, and Tkachov G 2020 2D Mater. 7 022007
[5] Novoselov K S, Mishchenko A, Carvalho A, and Castro N A H 2016 Science 353 aac9439
[6] Xu Y, Miotkowski I, Liu C, Tian J et al. 2014 Nat. Phys. 10 956
[7] Xu Y, Miotkowski I, and Chen Y P 2016 Nat. Commun. 7 11434
[8] Ichimura K, Matsushita S Y, Huynh K K, and Tanigaki K 2019 Appl. Phys. Lett. 115 052104
[9] Xie F, Zhang S, Liu Q, Xi C et al. 2019 Phys. Rev. B 99 081113
[10] Xu Y, Jiang G, Miotkowski I, Biswas R R et al. 2019 Phys. Rev. Lett. 123 207701
[11] Chong S K, Han K B, Sparks T D, and Deshpande V V 2019 Phys. Rev. Lett. 123 036804
[12] Wang J, Gorini C, Richter K, Wang Z et al. 2020 Nano Lett. 20 8493
[13] Chong S K, Tsuchikawa R, Harmer J, Sparks T D et al. 2020 ACS Nano 14 1158
[14] Liu S, Guillou H, Kent A D, Stupian G W et al. 1998 J. Appl. Phys. 83 6161
[15] Wang X, Du Y, Dou S, and Zhang C 2012 Phys. Rev. Lett. 108 266806
[16] Chiu S P and Lin J J 2013 Phys. Rev. B 87 035122
[17] Gehring P, Benia H M, Weng Y, Dinnebier R et al. 2013 Nano Lett. 13 1179
[18] Xia B, Ren P, Sulaev A, Liu P et al. 2013 Phys. Rev. B 87 085442
[19] Costache M V, Neumann I, Sierra J F, Marinova V et al. 2014 Phys. Rev. Lett. 112 086601
[20] Cho S, Dellabetta B, Zhong R, Schneeloch J et al. 2015 Nat. Commun. 6 7634
[21] Sulaev A, Zeng M, Shen S Q, Cho S K et al. 2015 Nano Lett. 15 2061
[22] Chen J, He X Y, Wu K H, Ji Z Q et al. 2011 Phys. Rev. B 83 241304
[23] Lee J, Park J, Lee J H, Kim J S et al. 2012 Phys. Rev. B 86 245321
[24] Lu H Z and Shen S Q 2014 Phys. Rev. Lett. 112 146601
[25] Ren Z, Taskin A A, Sasaki S, Segawa K et al. 2011 Phys. Rev. B 84 165311
[26] Segawa K, Ren Z, Sasaki S, Tsuda T et al. 2012 Phys. Rev. B 86 075306
[27] Pan Y, Wu D, Angevaare J R, Luigjes H et al. 2014 New J. Phys. 16 123035
[28] Misawa T, Nakamura S, Okazaki Y, Fukuyama Y et al. 2020 J. Phys.: Condens. Matter 32 405704
[29] Lin C J, He X Y, Liao J, Wang X X et al. 2013 Phys. Rev. B 88 041307
[30] Liao J, Ou Y, Liu H, He K et al. 2017 Nat. Commun. 8 16071
Related articles from Frontiers Journals
[1] Linwei Zhou, Chen-Guang Wang, Zhixin Hu, Xianghua Kong, Zhong-Yi Lu, Hong Guo, and Wei Ji. Quasi-One-Dimensional Free-Electron-Like States Selected by Intermolecular Hydrogen Bonds at the Glycine/Cu(100) Interface[J]. Chin. Phys. Lett., 2020, 37(11): 117302
[2] Yi-Fan He , Lei-Xi Wang , Zhi-Xing Xiao , Ya-Wei Lv, Lei Liao , and Chang-Zhong Jiang . Normal Strain-Induced Tunneling Behavior Promotion in van der Waals Heterostructures[J]. Chin. Phys. Lett., 2020, 37(8): 117302
[3] Lu-Lu Yang, Jun-Jie Shi, Min Zhang, Zhong-Ming Wei, Yi-Min Ding, Meng Wu, Yong He, Yu-Lang Cen, Wen-Hui Guo, Shu-Hang Pan, Yao-Hui Zhu. The 2D InSe/WS$_2$ Heterostructure with Enhanced Optoelectronic Performance in the Visible Region[J]. Chin. Phys. Lett., 2019, 36(9): 117302
[4] Gufeng Fu, Fang Cheng. Anisotropic Transport on Monolayer and Multilayer Phosphorene in the Presence of an Electric Field[J]. Chin. Phys. Lett., 2019, 36(5): 117302
[5] Ze-Long He, Qiang Li, Kong-Fa Chen, Ji-Yuan Bai, Sui-Hu Dang. Fano Effect and Anti-Resonance Band in a Parallel-Coupled Double Quantum Dot System with Two Multi-Quantum Dot Chains[J]. Chin. Phys. Lett., 2018, 35(9): 117302
[6] Chu-Hong Yang, Shu-Yu Zheng, Jie Fan, Xiu-Nian Jing, Zhong-Qing Ji, Guang-Tong Liu, Chang-Li Yang, Li Lu. Transport Studies on GaAs/AlGaAs Two-Dimensional Electron Systems Modulated by Triangular Array of Antidots[J]. Chin. Phys. Lett., 2018, 35(7): 117302
[7] Hong-Jun Wang, Yuan-Yuan Zhu, Jing Zhou, Yong Liu. Electrical Conductivity of a Single Electro-deposited CoZn Nanowire[J]. Chin. Phys. Lett., 2018, 35(7): 117302
[8] Ze-Long He, Ji-Yuan Bai, Shu-Jiang Ye, Li Li, Chun-Xia Li. Quantum Switch and Efficient Spin-Filter in a System Consisting of Multiple Three-Quantum-Dot Rings[J]. Chin. Phys. Lett., 2017, 34(8): 117302
[9] Li-Ling Zhou, Xue-Yun Zhou, Rong Cheng, Cui-Ling Hou, Hong Shen. Local Heating in a Normal-Metal–Quantum-Dot–Superconductor System without Electric Voltage Bias[J]. Chin. Phys. Lett., 2017, 34(6): 117302
[10] Shi-Li Yan, Zhi-Jian Xie, Jian-Hao Chen, Takashi Taniguchi, Kenji Watanabe. Electrically Tunable Energy Bandgap in Dual-Gated Ultra-Thin Black Phosphorus Field Effect Transistors[J]. Chin. Phys. Lett., 2017, 34(4): 117302
[11] Yi Ren, Fang Cheng. Ballistic Transport through a Strained Region on Monolayer Phosphorene[J]. Chin. Phys. Lett., 2017, 34(2): 117302
[12] Qing-Ling Sun, Lu Wang, Yang Jiang, Zi-Guang Ma, Wen-Qi Wang, Ling Sun, Wen-Xin Wang, Hai-Qiang Jia, Jun-Ming Zhou, Hong Chen. Direct Observation of Carrier Transportation Process in InGaAs/GaAs Multiple Quantum Wells Used for Solar Cells and Photodetectors[J]. Chin. Phys. Lett., 2016, 33(10): 117302
[13] Jun Zheng, Kai Du, Di Xiao, Zheng-Yang Zhou, Wen-Gang Wei, Jin-Jie Chen, Li-Feng Yin, Jian Shen. Synthesis of Ordered Ultra-long Manganite Nanowires via Electrospinning Method[J]. Chin. Phys. Lett., 2016, 33(09): 117302
[14] Xin Tan, Xing-Ye Zhou, Hong-Yu Guo, Guo-Dong Gu, Yuan-Gang Wang, Xu-Bo Song, Jia-Yun Yin, Yuan-Jie Lv, Zhi-Hong Feng. Excellent-Performance AlGaN/GaN Fin-MOSHEMTs with Self-Aligned Al$_{2}$O$_{3}$ Gate Dielectric[J]. Chin. Phys. Lett., 2016, 33(09): 117302
[15] Ya-Qing Feng, Kui-Juan Jin, Chen Ge, Xu He, Lin Gu, Zhen-Zhong Yang, Hai-Zhong Guo, Qian Wan, Meng He, Hui-Bin Lu, Guo-Zhen Yang. Effect of Terraces at the Interface on the Structural and Physical Properties of La$_{0.8}$Sr$_{0.2}$MnO$_{3}$ Thin Films[J]. Chin. Phys. Lett., 2016, 33(07): 117302
Full text