Chin. Phys. Lett.  2021, Vol. 38 Issue (11): 116802    DOI: 10.1088/0256-307X/38/11/116802
CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
Unexpected Selective Absorption of Lithium in Thermally Reduced Graphene Oxide Membranes
Jie Jiang1,2†, Liuhua Mu1,2†, Yu Qiang3†, Yizhou Yang3, Zhikun Wang4, Ruobing Yi1,2, Yinwei Qiu4, Liang Chen4*, Long Yan1*, and Haiping Fang1,3*
1Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
2University of Chinese Academy of Sciences, Beijing 100049, China
3Department of Physics, East China University of Science and Technology, Shanghai 200237, China
4Department of Optical Engineering, Zhejiang Provincial Key Laboratory of Chemical Utilization of Forestry Biomass, Zhejiang A&F University, Hangzhou 311300, China
Cite this article:   
Jie Jiang, Liuhua Mu, Yu Qiang et al  2021 Chin. Phys. Lett. 38 116802
Download: PDF(1580KB)   PDF(mobile)(1879KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Lithium plays an increasingly important role in scientific and industrial processes, and it is extremely important to extract lithium from a high Mg$^{2+}$/Li$^{+}$ mass ratio brine or to recover lithium from the leachate of spent lithium-ion batteries. Conventional wisdom shows that Li$^{+}$ with low valence states has a much weaker adsorption (and absorption energy) with graphene than multivalent ions such as Mg$^{2+}$. Here, we show the selective adsorption of Li$^{+}$ in thermally reduced graphene oxide (rGO) membranes over other metal ions such as Mg$^{2+}$, Co$^{2+}$, Mn$^{2+}$, Ni$^{2+}$, or Fe$^{2+}$. Interestingly, the adsorption strength of Li$^{+}$ reaches up to 5 times the adsorption strength of Mg$^{2+}$, and the mass ratio of a mixed Mg$^{2+}$/Li$^{+}$ solution at a very high value of $ 500\!:\!1$ can be effectively reduced to $ 0.7\!:\!1$ within only six experimental treatment cycles, demonstrating the excellent applicability of the rGO membranes in the Mg$^{2+}$/Li$^{+}$ separation. A theoretical analysis indicates that this unexpected selectivity is attributed to the competition between cation–$\pi$ interaction and steric exclusion when hydrated cations enter the confined space of the rGO membranes.
Received: 29 September 2021      Express Letter Published: 27 October 2021
Fund: Supported by the Fundamental Research Funds for the Central Universities, the National Natural Science Foundation of China (Grant Nos. 11974366, 11675246, 12074341, U1832170, and U1832150), the Key Research Program of Chinese Academy of Sciences (Grant No. QYZDJ-SSW-SLH053), the Computer Network Information Center of the Chinese Academy of Sciences, and the Shanghai Supercomputer Center of China.
TRENDMD:   
URL:  
http://cpl.iphy.ac.cn/10.1088/0256-307X/38/11/116802       OR      http://cpl.iphy.ac.cn/Y2021/V38/I11/116802
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Jie Jiang
Liuhua Mu
Yu Qiang
Yizhou Yang
Zhikun Wang
Ruobing Yi
Yinwei Qiu
Liang Chen
Long Yan
and Haiping Fang
[1] Griffith K J et al. 2018 Nature 559 556
[2] Dunn B et al. 2011 Science 334 928
[3] Bruce P G et al. 2012 Nat. Mater. 11 19
[4] Li M et al. 2020 Science 367 979
[5] Yang J et al. 2021 Chin. Phys. Lett. 38 068201
[6] Zhao J et al. 2017 Nat. Nanotechnol. 12 993
[7] Xiao L et al. 2017 Nat. Energy 2 17119
[8] Kang B et al. 2009 Nature 458 190
[9] Lin D et al. 2017 Nat. Nanotechnol. 12 194
[10] Harper G et al. 2019 Nature 575 75
[11] Razmjou A et al. 2019 Nat. Commun. 10 5793
[12] Meshram P et al. 2014 Hydrometallurgy 150 192
[13] Xing L et al. 2016 J. Membr. Sci. 520 596
[14] Vikström H et al. 2013 Appl. Energy 110 252
[15] Lu J et al. 2018 Appl. Surf. Sci. 427 931
[16] An J W et al. 2012 Hydrometallurgy 117–118 64
[17] Xiang W et al. 2017 Hydrometallurgy 171 27
[18] Ferreira D A et al. 2009 J. Power Sources 187 238
[19] Liu X et al. 2018 Hydrometallurgy 176 73
[20] Zhi S et al. 2018 Engineering 4 361
[21] Tran M K et al. 2019 Nat. Energy 4 339
[22] Lang J et al. 2020 Nat. Sustain. 3 386
[23] Lv W et al. 2018 ACS Sustain. Chem. Eng. 6 1504
[24] Zhao G et al. 2020 Adv. Mater. 32 1905756
[25] Yang H J et al. 2020 Chin. Phys. Lett. 37 028103
[26] Shi G S et al. 2013 Sci. Rep. 3 3436
[27] Geim A K and Novoselov K S 2007 Nat. Mater. 6 183
[28] Tu Y S et al. 2020 Chin. Phys. Lett. 37 066803
[29] Chen L et al. 2017 Nature 550 380
[30] Shi G et al. 2018 Nat. Chem. 10 776
[31] Joshi R K et al. 2014 Science 343 752
[32] Zhang H et al. 2018 Sci. Adv. 4 eaaq0066
[33] Sahu S et al. 2019 Sci. Adv. 5 eaaw5478
[34] Cao Y et al. 2012 Nano Lett. 12 3783
[35] Jeowski P et al. 2018 Nat. Mater. 17 167
[36] Yang C et al. 2019 Nature 569 245
[37] Bao W et al. 2014 Nat. Commun. 5 4224
[38] Hummers W S et al. 1958 J. Am. Chem. Soc. 80 1339
[39] Xu Y et al. 2008 J. Am. Chem. Soc. 130 5856
[40] Pan D et al. 2009 Chem. Mater. 21 3136
[41] Sun P et al. 2013 ACS Nano 7 428
[42] Shi G et al. 2011 Chin. Phys. B 20 068101
[43] Varma S et al. 2006 Biophys. Chem. 124 192
[44] Tansel B et al. 2006 Sep. Purif. Technol. 51 40
[45] Marcus Y 2009 Chem. Rev. 109 1346
[46] Zhao Y et al. 2008 Acc. Chem. Res. 41 157
[47] Zhao Y et al. 2008 Theor. Chem. Acc. 120 215
[48] Schwarze M et al. 2019 Nat. Mater. 18 242
[49] Yang Y et al. 2019 Phys. Chem. Chem. Phys. 21 7623
[50] Sato H et al. 2018 Sci. Rep. 8 2473
[51] Mu L et al. 2021 Phys. Chem. Chem. Phys. 23 14662
[52] Zhao Y et al. 2011 J. Chem. Theory Comput. 7 669
[53] Peng C Y et al. 1996 J. Comput. Chem. 17 49
Viewed
Full text


Abstract