Chin. Phys. Lett.  2021, Vol. 38 Issue (1): 016601    DOI: 10.1088/0256-307X/38/1/016601
Bidirectional and Unidirectional Negative Differential Thermal Resistance Effect in a Modified Lorentz Gas Model
Yu Yang , XiuLing Li*, and Lifa Zhang 
NNU-SULI Thermal Energy Research Center (NSTER) and Center for Quantum Transport and Thermal Energy Science (CQTES), School of Physics and Technology, Nanjing Normal University, Nanjing 210023, China
Cite this article:   
Yu Yang , XiuLing Li, and Lifa Zhang  2021 Chin. Phys. Lett. 38 016601
Download: PDF(897KB)   PDF(mobile)(886KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Recently, the negative differential thermal resistance effect was discovered in a homojunction made of a negative thermal expansion material, which is very promising for realizing macroscopic thermal transistors. Similar to the Monte Carlo phonon simulation to deal with grain boundaries, we introduce positive temperature-dependent interface thermal resistance in the modified Lorentz gas model and find negative differential thermal resistance effect. In the homojunction, we reproduce a pair of equivalent negative differential thermal resistance effects in different temperature gradient directions. In the heterojunction, we realize the unidirectional negative differential thermal resistance effect, and it is accompanied by the super thermal rectification effect. Using this new way to achieve high-performance thermal devices is a new direction, and will provide extensive reference and guidance for designing thermal devices.
Received: 06 October 2020      Published: 06 January 2021
PACS:  66.70.-f (Nonelectronic thermal conduction and heat-pulse propagation in solids;thermal waves)  
  05.60.-k (Transport processes)  
  44.10.+i (Heat conduction)  
  68.90.+g (Other topics in structure, and nonelectronic properties of surfaces and interfaces; thin films and low-dimensional structures)  
Fund: Supported by the National Natural Science Foundation of China (Grant Nos. 11975125 and 21803031), the Postgraduate Research & Practice Innovation Program of Jiangsu Province (Grant No. KYCX20 1229), and the Natural Science Foundation of the Jiangsu Higher Education Institution of China (Grant No. 18KJB150022).
URL:       OR
E-mail this article
E-mail Alert
Articles by authors
Yu Yang 
XiuLing Li
and Lifa Zhang 
[1] Terraneo M, Peyrard M and Casati G 2002 Phys. Rev. Lett. 88 094302
[2] Li B, Wang L and Casati G 2004 Phys. Rev. Lett. 93 184301
[3] Li B, Lan J and Wang L 2005 Phys. Rev. Lett. 95 104302
[4] Yang Y, Chen H, Wang H, Li N and Zhang L 2018 Phys. Rev. E 98 042131
[5] Wang H, Yang Y, Chen H, Li N and Zhang L 2019 Phys. Rev. E 99 062111
[6] Jiang P, Hu S, Ouyang Y, Ren W, Yu C, Zhang Z and Chen J 2020 J. Appl. Phys. 127 235101
[7] Zhang Z, Ouyang Y, Cheng Y, Chen J, Li N and Zhang G 2020 Phys. Rep. 860 1
[8] Strohm C, Rikken G L J A and Wyder P 2005 Phys. Rev. Lett. 95 155901
[9] Zhang L, Wang J and Li B 2009 New J. Phys. 11 113038
[10] Zhang L 2016 New J. Phys. 18 103039
[11] Li B, Wang L and Casati G 2006 Appl. Phys. Lett. 88 143501
[12] He D, Buyukdagli S and Hu B 2009 Phys. Rev. B 80 104302
[13] Hu J, Wang Y, Vallabhaneni A, Ruan X and Chen Y 2011 Appl. Phys. Lett. 99 113101
[14] Joulain K, Drevillon J, Ezzahri Y and Ordonez-Miranda J 2016 Phys. Rev. Lett. 116 200601
[15] Fornieri A, Timossi G, Bosisio R, Solinas P and Giazotto F 2016 Phys. Rev. B 93 134508
[16] Criado-Sancho M and Jou D 2017 J. Appl. Phys. 121 024503
[17] Yang Y, Ma D, Zhao Y and Zhang L 2020 J. Appl. Phys. 127 195301
[18] Chang C, Okawa D, Majumdar A and Zettl A 2006 Science 314 1121
[19] Wang H, Hu S, Takahashi K, Zhang X, Takamatsu H and Chen J 2017 Nat. Commun. 8 1
[20] Pollack G 1969 Rev. Mod. Phys. 41 48
[21] Swartz E and Pohl R 1989 Rev. Mod. Phys. 61 605
[22] Swartz E and Pohl R 1987 Appl. Phys. Lett. 51 2200
[23] Stoner R and Maris H 1993 Phys. Rev. B 48 16373
[24] Costescu R, Wall M and Cahill D 2003 Phys. Rev. B 67 054302
[25] Lyeo H and Cahill D 2006 Phys. Rev. B 73 144301
[26] Chen Z, Jang W, Bao W, Lau C and Dames C 2009 Appl. Phys. Lett. 95 161910
[27] Landry E and Mcgaughey A 2009 Phys. Rev. B 80 165304
[28] Koh Y, Bae M, Cahill D and Pop E 2010 Nano Lett. 10 4363
[29] Ye N, Feser J, Sadasivam S, Fisher T, Wang T, Ni C and Janotti A 2017 Phys. Rev. B 95 085430
[30] Hohensee G, Wilson R and Cahill D 2015 Nat. Commun. 6 6578
[31] Hsieh W, Lyons A, Pop E, Keblinski P and Cahill D 2011 Phys. Rev. B 84 184107
[32] Alonso D, Artuso R, Casati G and Guarneri I 1999 Phys. Rev. Lett. 82 1859
[33] Li B, Casati G and Wang J 2003 Phys. Rev. E 67 021204
[34] Larralde H, Leyvraz F and Mejia-Monasterio C 2003 J. Stat. Phys. 113 197
[35] Casati G, Mejia-Monasterio C and Prosen T 2007 Phys. Rev. Lett. 98 104302
[36] Chen H, Wang H, Yang Y, Li N and Zhang L 2018 Phys. Rev. E 98 032131
[37] Chen H, Yang Y, Yu Z, Zhong M and Zhang L 2020 Phys. Rev. E 101 042129
[38] Hao Q, Chen G and Jeng M 2009 J. Appl. Phys. 106 114321
[39] Hori T, Shiomi J and Dames C 2015 Appl. Phys. Lett. 106 171901
Related articles from Frontiers Journals
[1] Qing Xi, Jinxin Zhong, Jixiong He, Xiangfan Xu, Tsuneyoshi Nakayama, Yuanyuan Wang, Jun Liu, Jun Zhou, and Baowen Li. A Ubiquitous Thermal Conductivity Formula for Liquids, Polymer Glass, and Amorphous Solids[J]. Chin. Phys. Lett., 2020, 37(10): 016601
[2] Wen-Xue Xu, Xin-Gang Liang. Molecular Dynamics Simulation of Effects of Stretching and Compressing on Thermal Conductivity of Aligned Silicon Oxygen Chains[J]. Chin. Phys. Lett., 2020, 37(4): 016601
[3] MING Yi, DING Xing. Quantum Heat Transfer in a Harmonic Chain with a Dephasing Reservoir[J]. Chin. Phys. Lett., 2014, 31(08): 016601
[4] DING Xing, MING Yi. Mechanisms Causing Ballistic Thermal Rectification[J]. Chin. Phys. Lett., 2014, 31(04): 016601
[5] BAI Su-Yuan, TANG Zhen-An, HUANG Zheng-Xing, Yu Jun, WANG Jing, LIU Gui-Chang. Preparation and Thermal Characterization of Diamond-Like Carbon Films[J]. Chin. Phys. Lett., 2009, 26(7): 016601
[6] BAI Su-Yuan, TANG Zhen-An, HUANG Zheng-Xing, YU Jun, WANG Jia-Qi. Thermal Conductivity Measurement of Submicron-Thick Aluminium Oxide Thin Films by a Transient Thermo-Reflectance Technique[J]. Chin. Phys. Lett., 2008, 25(2): 016601
[7] XU Xiao-Dong, MA Di, ZHANG Shu-Yi, LUO Ai-Hua, KIYOTAKA Wasa,. Thermal Diffusivity of Film/Substrate Structures Characterized by Transient Thermal Grating Method[J]. Chin. Phys. Lett., 2008, 25(1): 016601
Full text