Chin. Phys. Lett.  2021, Vol. 38 Issue (1): 010503    DOI: 10.1088/0256-307X/38/1/010503
GENERAL |
Isotropic Thermal Cloaks with Thermal Manipulation Function
Quan-Wen Hou*, Jia-Chi Li , and Xiao-Peng Zhao 
Smart Materials Laboratory, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an 710129, China
Cite this article:   
Quan-Wen Hou, Jia-Chi Li , and Xiao-Peng Zhao  2021 Chin. Phys. Lett. 38 010503
Download: PDF(1123KB)   PDF(mobile)(1120KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract By extending the conventional scattering canceling theory, we propose a new design method for thermal cloaks based on isotropic materials. When the objects are covered by the designed cloaks, they will not disturb the temperature profile in the background zone. In addition, if different inhomogeneity coefficients are selected in the thermal cloak design process, these cloaks can manipulate the temperature gradient of the objects, i.e., make the temperature gradients higher, lower, or equal to the thermal gradient in the background zone. Therefore, thermal transparency, heat concentration or heat shield effects can be realized under a unified framework.
Received: 22 September 2020      Published: 06 January 2021
PACS:  78.67.Pt (Multilayers; superlattices; photonic structures; metamaterials)  
  44.10.+i (Heat conduction)  
  05.70.-a (Thermodynamics)  
Fund: Supported by the National Natural Science Foundation of China (Grant No. 51406168).
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/38/1/010503       OR      https://cpl.iphy.ac.cn/Y2021/V38/I1/010503
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Quan-Wen Hou
Jia-Chi Li 
and Xiao-Peng Zhao 
[1] Fan C Z, Gao Y and Huang J P 2008 Appl. Phys. Lett. 92 251907
[2] Yang T Z, Huang L J, Chen F and Xu W K 2013 J. Phys. D 46 305102
[3] Dede E M, Nomura T, Schmalenberg P and Lee J S 2013 Appl. Phys. Lett. 103 63501
[4] Guenneau S, Amra C and Veynante D 2012 Opt. Express 20 8207
[5] Ye Z Q and Cao B Y 2016 Phys. Chem. Chem. Phys. 18 32952
[6] Chen F and Lei D Y 2015 Sci. Rep. 5 11552
[7] Hu R, Wei X, Hu J and Luo X 2014 Sci. Rep. 4 3600
[8] Narayana S, Savo S and Sato Y 2013 Appl. Phys. Lett. 102 201904
[9] Guenneau S and Amra C 2013 Opt. Express 21 6578
[10] Vemuri K P, Canbazoglu F M and Bandaru P R 2014 Appl. Phys. Lett. 105 193904
[11] Liu Y, Jiang W, He S and Ma Y 2014 Opt. Express 22 17006
[12] Li Y, Shen X, Wu Z, Huang J, Chen Y, Ni Y and Huang J 2015 Phys. Rev. Lett. 115 195503
[13] Hu R, Zhou S, Li Y, Lei D, Luo X and Qiu C 2018 Adv. Mater. 30 1707237
[14] Hou Q, Zhao X, Meng T and Liu C 2016 Appl. Phys. Lett. 109 103506
[15] Sun F and He S 2017 Sci. Rep. 7 40949
[16] Hu R, Huang S, Wang M, Luo X, Shiomi J and Qiu C W 2019 Adv. Mater. 31 1807849
[17] Kang S, Cha J, Seo K, Kim S, Cha Y, Lee H, Park J and Choi W 2019 Int. J. Heat Mass Transfer 130 469
[18] Han T C, Yuan T, Li B W and Qiu C W 2013 Sci. Rep. 3 1593
[19] Hou Q, Yin J, Zhao X and Bi Y 2018 Phys. Lett. A 382 2382
[20] Han T, Bai X, Gao D, Thong J T L, Li B and Qiu C 2014 Phys. Rev. Lett. 112 54302
[21] Xu H, Shi X, Gao F, Sun H and Zhang B 2014 Phys. Rev. Lett. 112 54301
[22] Yang T, Bai X, Gao D, Wu L, Li B, Thong J T L and Qiu C 2015 Adv. Mater. 27 7752
[23] Xu G, Zhang H, Xie M and Jin Y 2017 AIP Adv. 7 105322
[24] Hu R, Huang S, Wang M, Zhou L, Peng X and Luo X 2018 Phys. Rev. Appl. 10 054032
[25] Wang R, Xu L, Ji Q and Huang J 2018 J. Appl. Phys. 123 115117
[26] Narayana S and Sato Y 2012 Phys. Rev. Lett. 108 214303
[27] He X and Wu L 2013 Phys. Rev. E 88 33201
[28] Han T, Yang P, Li Y, Lei D, Li B, Hippalgaonkar K and Qiu C 2018 Adv. Mater. 30 1804019
Viewed
Full text


Abstract