Chin. Phys. Lett.  2021, Vol. 38 Issue (1): 010502    DOI: 10.1088/0256-307X/38/1/010502
GENERAL |
Adaptive Radiative Thermal Camouflage via Synchronous Heat Conduction
Jiawei Zhang1, Shiyao Huang2, and Run Hu2*
1Well-Tech Research Institute of China Oilfield Service Limited, Beijing 101149, China
2State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
Cite this article:   
Jiawei Zhang, Shiyao Huang, and Run Hu 2021 Chin. Phys. Lett. 38 010502
Download: PDF(810KB)   PDF(mobile)(805KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The advent of transformation thermotics has seen a boom in development of thermal metamaterials with a variety of thermal functionalities, including phenomena such as thermal cloaking and camouflage. However, most thermal metamaterials-based camouflage devices only tune in-plane heat conduction, which may fail to conceal a target from out-of-plane detection. We propose an adaptive radiative thermal camouflage via tuning out-of-plane transient heat conduction, and it is validated by both simulation and experiment. The physics underlying the performance of our adaptive thermal camouflage is based on real-time synchronous heat conduction through the camouflage device and the background plate, respectively. The proposed concept and device represent a promising new approach to fabrication of conductive thermal metamaterials, providing a feasible and effective way to achieve adaptive thermal camouflage.
Received: 25 September 2020      Published: 06 January 2021
Fund: Supported by the National Natural Science Foundation of China (Grant No. 52076087).
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/38/1/010502       OR      https://cpl.iphy.ac.cn/Y2021/V38/I1/010502
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Jiawei Zhang
Shiyao Huang
and Run Hu
[1] Han T C, Bai X, Thong J T L, Li B W and Qiu C W 2014 Adv. Mater. 26 1731
[2] Hu R and Luo X B 2019 Natl. Sci. Rev. 6 1071
[3] Liu Y, Song J, Zhao W, Ren X, Cheng Q, Luo X B, Fang N and Hu R 2020 Nanophotonics 9 855
[4] Hu R, Huang S, Wang M, Luo X B, Shiomi J and Qiu C W 2019 Adv. Mater. 31 1807849
[5] Song J, Huang S, Ma Y, Cheng Q, Hu R and Luo X B 2020 Opt. Express 28 875
[6] Hu R, Zhou S, Li Y, Lei D Y, Luo X B, Qiu C W 2018 Adv. Mater. 30 1707237
[7] Fan C Z, Gao Y and Huang J P 2008 Appl. Phys. Lett. 92 251907
[8] Hu R, Huang S Y, Wang M, Zhou L L, Peng X Y and Luo X B 2018 Phys. Rev. Appl. 10 054032
[9] Schittny R, Kadic M, Guenneau S and Wegener M 2013 Phys. Rev. Lett. 110 195901
[10] Xu H Y, Shi X H, Gao F, Sun H D and Zhang B L 2014 Phys. Rev. Lett. 112 054301
[11] Han T C, Bai X, Gao D L, Thong J T L, Li B W and Qiu C W 2014 Phys. Rev. Lett. 112 054302
[12] Hu R, Liu Y, Shin S, Huang S, Ren X, Shu W, Cheng J J, Tao G, Xu W, Chen R and Luo X 2020 Adv. Energy Mater. 10 1903921
[13] Ma Y G, Lan L, Jiang W, Sun F and He S L 2013 NPG Asia Mater. 5 e73
[14] Hu R, Wei X L, Hu J Y and Luo X B 2015 Sci. Rep. 4 3600
[15] Li Y, Shen X Y, Wu Z H, Huang J Y, Chen Y X, Ni Y S and Huang J P 2015 Phys. Rev. Lett. 115 195503
[16] Narayana S and Sato Y 2012 Phys. Rev. Lett. 108 214303
[17] Hu R, Iwamoto S, Feng L, Ju S, Hu S, Ohnishi M, Nagai N, Hirakawa K and Shiomi J 2020 Phys. Rev. X 10 021050
[18] Li Y, Bai X, Yang T, Luo H and Qiu C W 2018 Nat. Commun. 9 273
[19] Li J, Li Y, Wang W, Li L and Qiu C 2020 Opt. Express 28 25894
[20] Xiao L, Ma H, Liu J, Zhao W, Jia Y, Zhao Q, Liu K, Wu Y, Wei Y, Fan S and Jiang K 2015 Nano Lett. 15 8365
[21] Qu Y R, Li Q, Cai L, Pan M Y, Ghosh P, Du K K and Qiu M 2018 Light: Sci. & Appl. 7 26
[22] Kats M A, Blanchard R, Zhang S Y, Genevet P, Ko C, Ramanathan S and Capasso F 2013 Phys. Rev. X 3 041004
[23] Coppens Z J and Valentine J G 2017 Adv. Mater. 29 1701275
[24] Inoue T, De Zoysa M, Asano T and Noda S 2014 Nat. Mater. 13 928
[25] Chakraborty P, Liu Y, Ma T, Guo X, Cao L, Hu R and Wang Y 2020 ACS Appl. Mater. & Interfaces 12 8795
[26] Tittl A, Michel A K U, Schaferling M, Yin X H, Gholipour B, Cui L, Wuttig M, Taubner T, Neubrech F and Giessen H 2015 Adv. Mater. 27 4597
[27] Salihoglu O, Uzlu H B, Yakar O, Aas S, Balci O, Kakenov N, Balci S, Olcum S, Suzer S and Kocabas C 2018 Nano Lett. 18 4541
[28] Hu R, Song J, Liu Y, Xi W, Zhao Y, Yu X, Cheng Q, Tao G and Luo X 2020 Nano Energy 72 104687
[29] Phan L, Kautz R, Leung E M, Naughton K L, Dyke Y V and Gorodetsky A A 2016 Chem. Mater. 28 6804
[30] Phan L, IV W G W, Ordinario D D, Karshalev E, Jocson J M, Burke A M and Gorodetsky A A 2013 Adv. Mater. 25 5621
[31] Xu C, Stiubianu G T and Gorodetsky A A 2018 Science 359 1495
[32] Shang J, Tian B, Jiang C and Huang J 2018 Appl. Phys. Lett. 113 261902
[33] Peng X and Hu R 2019 ES Energy & Environ. 6 39
[34] Peng Y, Li Y, Cao P, Zhu X and Qiu C 2020 Adv. Funct. Mater. 30 2002061
Viewed
Full text


Abstract