Chin. Phys. Lett.  2021, Vol. 38 Issue (1): 010501    DOI: 10.1088/0256-307X/38/1/010501
GENERAL |
Managing Quantum Heat Transfer in a Nonequilibrium Qubit-Phonon Hybrid System with Coherent Phonon States
Chen Wang1*, Lu-Qin Wang2, and Jie Ren2*
1Department of Physics, Zhejiang Normal University, Jinhua 321004, China
2Center for Phononics and Thermal Energy Science, China-EU Joint Center for Nanophononics, Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Sciences and Engineering, Tongji University, Shanghai 200092, China
Cite this article:   
Chen Wang, Lu-Qin Wang, and Jie Ren 2021 Chin. Phys. Lett. 38 010501
Download: PDF(1512KB)   PDF(mobile)(1492KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We investigate quantum heat transfer in a nonequilibrium qubit-phonon hybrid open system, dissipated by external bosonic thermal reservoirs. By applying coherent phonon states embedded in the dressed quantum master equation, we are capable of dealing with arbitrary qubit-phonon coupling strength. It is counterintuitively found that the effect of negative differential thermal conductance is absent at strong qubit-phonon hybridization, but becomes profound at weak qubit-phonon coupling regime. The underlying mechanism of decreasing heat flux by increasing the temperature bias relies on the unidirectional transitions from the up-spin displaced coherent phonon states to the down-spin counterparts, which seriously freezes the qubit and prevents the system from completing a thermodynamic cycle. Finally, the effects of perfect thermal rectification and giant heat amplification are unraveled, thanks to the effect of negative differential thermal conductance. These results of the nonequilibrium qubit-phonon open system would have potential implications in smart energy control and functional design of phononic hybrid quantum devices.
Received: 09 October 2020      Published: 06 January 2021
PACS:  05.60.Gg (Quantum transport)  
  03.65.Yz (Decoherence; open systems; quantum statistical methods)  
  05.70.Ln (Nonequilibrium and irreversible thermodynamics)  
  63.22.-m (Phonons or vibrational states in low-dimensional structures and nanoscale materials)  
Fund: Supported by the National Natural Science Foundation of China (Grant No. 11704093), the Opening Project of Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, the National Natural Science Foundation of China (Grant Nos. 11935010 and 11775159), and the Natural Science Foundation of Shanghai (Grant Nos. 18ZR1442800 and 18JC1410900).).
TRENDMD:   
URL:  
http://cpl.iphy.ac.cn/10.1088/0256-307X/38/1/010501       OR      http://cpl.iphy.ac.cn/Y2021/V38/I1/010501
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Chen Wang
Lu-Qin Wang
and Jie Ren
[1] Wallquist M, Hammerer K, Rabl P, Lukin M and Zoller P 2009 Phys. Scr. T137 014001
[2] Kurizki G, Bertet P, Kubo Y, Mølmer K, Petrosyan D, Rabl P and Schmiedmayer J 2015 Proc. Natl. Acad. Sci. USA 112 3866
[3] Clerk A A, Lehnert K W, Bertet P, Petta J R and Nakamura Y 2020 Nat. Phys. 16 257
[4] Blais A, Huang R S, Wallraff A, Girvin S M and Schoelkopf R J 2004 Phys. Rev. A 69 062320
[5] Wallraff A, Schuster D I, Blais A, Frunzio L, Huang R S, Majer J, Kumar S, Girvin S M and Schoelkopf R J 2004 Nature 431 162
[6] Niemczyk T, Deppe F, Huebl H, Menzel E P, Hocke F, Schwarz M J, Garcia-Ripoll J J, Zueco D, Hummer T, Solano E, Marx A and Gross R 2010 Nat. Phys. 6 772
[7] O'Connell A D, Hofheinz M, Ansmann M, Bialczak R C, Lennander M, Lucero E, Neeley M, Sank D, Wang H, Weides M, Wenner J, Martinis J M and Cleland A N 2010 Nature 464 697
[8] You J Q and Nori F 2011 Nature 474 589
[9] Zhou L, Yang L P, Li Y and Sun C P 2013 Phys. Rev. Lett. 111 103604
[10] Acevedo O L, Quiroga L, Rodríguez F J and Johnson N F 2015 New J. Phys. 17 093005
[11] Cirac J I, Zoller P, Kimble H J and Mabuchi H 1997 Phys. Rev. Lett. 78 3221
[12] Kimble H J 2008 Nature 453 1023
[13] Rabl P, Kolkowitz S J, Koppens F H L, Harris J G E, Zoller P and Lukin M D 2010 Nat. Phys. 6 602
[14] Kolkowitz S, Jayich A C B, Unterreithmeier Q P, Bennett S D, Rabi P, Harris J G E and Lukin M D 2012 Science 335 1603
[15] Yeo I, de Assis P L, Gloppe A, Dupont-Ferrier E, Verlot P, Malik N S, Dupuy E, Claudon J, Gerard J M, Auffeves A, Nogues G, Seidelin S, Poizat J P, Arcizet O and Richard M 2014 Nat. Nanotechnol. 9 106
[16] Schuetz M J A, Kessler E M, Giedke G, Vandersypen L M K, Lukin M D and Cirac J I 2015 Phys. Rev. X 5 031031
[17] Bienfait A, Satzinger K J, Zhong Y P, Chang H S, Chou M H, Conner C R, Dumur E, Grebel J, Peairs G A, Povey R G and Cleland A N 2019 Science 364 368
[18] Pechal M, Arrangoiz-Arriola P and Safavi-Naeini A H 2018 Quantum Sci. Technol. 4 015006
[19] Hann C T, Zou C L, Zhang Y X, Chu Y W, Schoelkopf R J, Girvin S M and Jiang L 2019 Phys. Rev. Lett. 123 250501
[20] Ceban V, Longo P and Macovei M A 2017 Phys. Rev. A 95 023806
[21] Droenner L, Naumann N L, Kabuss J and Carmele A 2017 Phys. Rev. A 96 043805
[22] Montenegro V, Coto R, Eremeev V and Orszag M 2018 Phys. Rev. A 98 053837
[23] Maguire H, lles-Smith J and Nazir A 2019 Phys. Rev. Lett. 123 093601
[24] Micadei K, Peterson J P S, Souza A M, Sarthour R S, Oliveira I S, Landi G T, Batalhao T B, Serra R M and Lutz E 2019 Nat. Commun. 10 2456
[25] Man Z X, Zhang Q and Xia Y J 2019 Quantum Inf. Process. 18 157
[26] Latune C L, Sinayskiy I and Petruccione F 2019 Phys. Rev. Res. 1 033097
[27] Li N B, Ren J, Wang L, Zhang G, Hanggi P and Li B 2012 Rev. Mod. Phys. 84 1045
[28] He D H, Thingna J, Wang J S and Li B 2016 Phys. Rev. B 94 155411
[29] Zhang Z Q and Lü J T 2017 Phys. Rev. B 96 125432
[30] He D H, Thingna J and Cao J S 2018 Phys. Rev. B 97 195437
[31] Zhu J X and Balatsky A V 2003 Phys. Rev. B 67 165326
[32] Zippilli S, Morigi G and Bachtold A 2009 Phys. Rev. Lett. 102 096804
[33] Ren J, Zhu J X, Gubernatis J E, Wang C and Li B 2012 Phys. Rev. B 85 155443
[34] Arrachea L, Bode N and von Oppen F 2014 Phys. Rev. B 90 125450
[35] Stadler P, Belzig W and Rastelli G 2014 Phys. Rev. Lett. 113 047201
[36] Stadler P, Belzig W and Rastelli G 2016 Phys. Rev. Lett. 117 197202
[37] Härtle R, Schinabeck C, Kulkarni M, Gelbwaser-Klimovsky D, Thoss M and Peskin U 2018 Phys. Rev. B 98 081404
[38] Li B, Wang L and Casati G 2006 Appl. Phys. Lett. 88 143501
[39] Ren J and Zhu J X 2013 Phys. Rev. B 87 241412(R)
[40] Ren J and Zhu J X 2013 Phys. Rev. B 87 165121
[41] Fornieri A, Timossi G, Bosisio R, Solinas P and Giazotto F 2016 Phys. Rev. B 93 134508
[42] Sierra M A, López R and Lim J S 2018 Phys. Rev. Lett. 121 096801
[43] Ren J 2013 Phys. Rev. B 88 220406(R)
[44] Ren J and Zhu J X 2013 Phys. Rev. B 88 094427
[45] Li B, Wang L and Casati G 2004 Phys. Rev. Lett. 93 184301
[46] Leggett A J, Chakravarty S, Dorsey A T, Fisher M P A, Garg A and Zwerger W 1987 Rev. Mod. Phys. 59 1
[47]Weiss U 2008 Quantum Dissipative Systems (Singapore: World Scientific)
[48] Chen Q H, Zhang Y Y, Liu T and Wang K L 2008 Phys. Rev. A 78 051801
[49] Beaudoin F, Gambetta J M and Blais A 2011 Phys. Rev. A 84 043832
[50] Ridolfo A, Leib M, Savasta S and Hartmann M J 2012 Phys. Rev. Lett. 109 193602
[51] Ridolfo A, Savasta S and Hartmann M J 2013 Phys. Rev. Lett. 110 163601
[52] Boite A L, Hwang M J, Nha H C and Plenio M B 2016 Phys. Rev. A 94 033827
[53] Tscherbul T V and Brumer P 2014 Phys. Rev. Lett. 113 113601
[54] Li S W, Cai C Y and Sun C P 2015 Ann. Phys. 360 19
[55] Eastham P R, Kirton P, Cammack H M, Lovett B W and Keeling J 2016 Phys. Rev. A 94 012110
[56] Wang C, Xu D Z, Liu H and Gao X L 2019 Phys. Rev. E 99 042102
[57] Wang Z H, Wu W and Wang J 2019 Phys. Rev. A 99 042320
[58] He D H, Buyukdagli S and Hu B 2009 Phys. Rev. B 80 104302
[59] He D H, Ai B Q, Chan H K and Hu B 2010 Phys. Rev. E 81 041131
[60] Chan H K, He D H and Hu B 2014 Phys. Rev. E 89 052126
[61] Segal D 2006 Phys. Rev. B 73 205415
[62] Wang C, Ren J and Cao J S 2015 Sci. Rep. 5 11878
[63] Ruokola T, Ojanen T and Jauho A P 2009 Phys. Rev. B 79 144306
[64] Ojanen T 2009 Phys. Rev. B 80 180301
[65] Zhang L F, Yan Y H, Wu C Q, Wang J S and Li B W 2009 Phys. Rev. B 80 172301
[66] Zhang L F, Wang J S and Li B W 2010 Phys. Rev. B 81 100301
[67] Balachandra V, Pereira E, Casati G and Poletti D 2018 Phys. Rev. Lett. 120 200603
[68] Long Y, Ren J and Chen H 2018 Proc. Natl. Acad. Sci. USA 115 9951
[69] Shi C et al. 2019 Natl. Sci. Rev. 6 707
[70] Long Y, Zhang D, Yang C, Ge J, Chen H and Ren J 2020 Nat. Commun. 11 4716
Related articles from Frontiers Journals
[1] Xiao-Lan Zong, Wei Song, Ming Yang, Zhuo-Liang Cao. Influence of Quantum Feedback Control on Excitation Energy Transfer *[J]. Chin. Phys. Lett., 0, (): 010501
[2] Xiao-Lan Zong, Wei Song, Ming Yang, Zhuo-Liang Cao. Influence of Quantum Feedback Control on Excitation Energy Transfer[J]. Chin. Phys. Lett., 2020, 37(6): 010501
[3] Ze-Long He, Qiang Li, Kong-Fa Chen, Ji-Yuan Bai, Sui-Hu Dang. Fano Effect and Anti-Resonance Band in a Parallel-Coupled Double Quantum Dot System with Two Multi-Quantum Dot Chains[J]. Chin. Phys. Lett., 2018, 35(9): 010501
[4] Ze-Long He, Ji-Yuan Bai, Shu-Jiang Ye, Li Li, Chun-Xia Li. Quantum Switch and Efficient Spin-Filter in a System Consisting of Multiple Three-Quantum-Dot Rings[J]. Chin. Phys. Lett., 2017, 34(8): 010501
[5] Ke-Jie Wang, Wei Wang, Min-Hao Zhang, Xiao-Qian Zhang, Pei Yang, Bo Liu, Ming Gao, Da-Wei Huang, Jun-Ran Zhang, Yu-Jie Liu, Xue-Feng Wang, Feng-Qiu Wang, Liang He, Yong-Bing Xu, Rong Zhang. Weak Anti-Localization and Quantum Oscillations in Topological Crystalline Insulator PbTe[J]. Chin. Phys. Lett., 2017, 34(2): 010501
[6] LI Li-Ping, LUO Xiao-Bing, HU Qiang-Lin, YU Xiao-Guang. Enhancement of Localization in a Driven Four-Well System with Second-Order Coupling[J]. Chin. Phys. Lett., 2013, 30(11): 010501
[7] A. I. Arbab. Transport Properties of the Universal Quantum Equation[J]. Chin. Phys. Lett., 2012, 29(3): 010501
[8] S. Ali Shan, **, A. Mushtaq . Role of Jeans Instability in Multi-Component Quantum Plasmas in the Presence of Fermi Pressure[J]. Chin. Phys. Lett., 2011, 28(7): 010501
[9] LI Chun-Zhi, SONG Yuan-Hong, WANG You-Nian. Interactions of a Charged Particle with Parallel Two-Dimensional Quantum Electron Gases[J]. Chin. Phys. Lett., 2008, 25(8): 010501
[10] WEN Ling-Hua, , LIU Min, , KONG Ling-Bo, , ZHAN Ming-Sheng,. Incomplete Erasure of Which-Way Information Encoded in Atomic Hyperfine States[J]. Chin. Phys. Lett., 2005, 22(4): 010501
Viewed
Full text


Abstract