Chin. Phys. Lett.  2020, Vol. 37 Issue (9): 096802    DOI: 10.1088/0256-307X/37/9/096802
CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
Directly Determining the Interface Structure and Band Offset of a Large-Lattice-Mismatched CdS/CdTe Heterostructure
Quanyin Tang1, Ji-Hui Yang1,3, Zhi-Pan Liu2, and Xin-Gao Gong1,3*
1Key Laboratory for Computational Physical Sciences (MOE), State Key Laboratory of Surface Physics, Department of Physics, Fudan University, Shanghai 200433, China
2Key Laboratory for Computational Physical Sciences (MOE), Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai 200433, China
3Shanghai Qi Zhi Institute, Shanghai 200232, China
Cite this article:   
Quanyin Tang, Ji-Hui Yang, Zhi-Pan Liu et al  2020 Chin. Phys. Lett. 37 096802
Download: PDF(1277KB)   PDF(mobile)(1268KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The CdS/CdTe heterojunction plays an important role in determining the energy conversion efficiency of CdTe solar cells. However, the interface structure remains unknown, due to the large lattice mismatch between CdS and CdTe, posing great challenges to achieving an understanding of its interfacial effects. By combining a neural-network-based machine-learning method and the stochastic surface walking-based global optimization method, we first train a neural network potential for CdSTe systems with demonstrated robustness and reliability. Based on the above potential, we then use simulated annealing to obtain the optimal structure of the CdS/CdTe interface. We find that the most stable structure has the features of both bulks and disorders. Using the obtained structure, we directly calculate the band offset between CdS and CdTe by aligning the core levels in the heterostructure with those in the bulks, using one-shot first-principles calculations. Our calculated band offset is 0.55 eV, in comparison with 0.70 eV, obtained using other indirect methods. The obtained interface structure should prove useful for further study of the properties of CdTe/CdS heterostructures. Our work also presents an example which is applicable to other complex interfaces.
Received: 02 July 2020      Published: 01 September 2020
PACS:  68.35.-p (Solid surfaces and solid-solid interfaces: structure and energetics)  
  71.20.Nr (Semiconductor compounds)  
  71.55.Gs (II-VI semiconductors)  
Fund: Supported by the National Natural Science Foundation of China (Grant No. 11974078), the Fudan Start-up Funding (Grant No. JIH1512034), and the Shanghai Sailing Program (Grant No. 19YF1403100).
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/37/9/096802       OR      https://cpl.iphy.ac.cn/Y2020/V37/I9/096802
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Quanyin Tang
Ji-Hui Yang
Zhi-Pan Liu
and Xin-Gao Gong
[1] Britt J and Ferekides C 1993 Appl. Phys. Lett. 62 2851
[2] Wu X Z 2004 Sol. Energy 77 803
[3] Il'chuk G, Kusnezh V, Rud V Y, Rud Y V, Shapowal P Y and Petrus R Y 2010 Semiconductors 44 318
[4] Green M A, Dunlop E D, Levi D H, Hohl-Ebinger J, Yoshita M and Ho-Baillie A W Y 2020 Prog. Photovoltaics 28 3
[5] Shockley W and Queisser H J 1961 J. Appl. Phys. 32 510
[6] Wei S H, Zhang S B and Zunger A 2000 J. Appl. Phys. 87 1304
[7] Dharmadasa I M, Samantilleke A P, Chaure N B and Young J 2002 Semicond. Sci. Technol. 17 1238
[8] Boieriu P, Sporken R and Sivananthan S 2002 J. Vac. Sci. & Technol. B 20 1777
[9] Minemoto T, Matsui T, Takakura H, Hamakawa Y, Negami T, Hashimoto Y, Uenoyama T and Kitagawa M 2001 Sol. Energy Mater. Sol. Cells 67 83
[10] Loginov Y Y, Durose K, AlAllak H M, Galloway S A, Oktik S, Brinkman A W, Richter H and Bonnet D 1996 J. Cryst. Growth 161 159
[11] Li C, Poplawsky J, Yan Y F and Pennycook S J 2017 Mater. Sci. Semicond. Process. 65 64
[12] Smith D J, Lu J, Aoki T, McCartney M R and Zhang Y H 2017 J. Mater. Res. 32 921
[13] McCandless B E, Moulton L V and Birkmire R W 1997 Prog. Photovoltaics 5 249
[14] McCandless B E, Engelmann M G and Birkmire R W 2001 J. Appl. Phys. 89 988
[15] Wu X, Asher S, Levi D H, King D E, Yan Y, Gessert T A and Sheldon P 2001 J. Appl. Phys. 89 4564
[16] Ohata K, Saraie J and Tanaka T 1973 Jpn. J. Appl. Phys. 12 1641
[17] Pal R, Dutta J, Chaudhuri S and Pal A K 1993 J. Phys. D 26 704
[18] Klein A 2015 J. Phys.: Condens. Matter 27 134201
[19] Lane D W 2006 Sol. Energy Mater. Sol. Cells 90 1169
[20] Oman D M, Dugan K M, Killian J L, Ceekala V, Ferekides C S and Morel D L 1995 Appl. Phys. Lett. 67 1896
[21] Hohenberg P and Kohn W 1964 Phys. Rev. B 136 B864
[22] Kohn W and Sham L J 1965 Phys. Rev. 140 A1133
[23] Shang C and Liu Z P 2013 J. Chem. Theory Comput. 9 1838
[24] Shang C, Zhang X J and Liu Z P 2014 Phys. Chem. Chem. Phys. 16 17845
[25] Huang S D, Shang C, Zhang X J and Liu Z P 2017 Chem. Sci. 8 6327
[26] Ma S C, Shang C and Liu Z P 2019 J. Chem. Phys. 151 050901
[27] Lewis N S 2007 Science 315 798
[28] Alder B J and Wainwright T E 1959 J. Chem. Phys. 31 459
[29] Gibson J B, Goland A N, Milgram M and Vineyard G H 1960 Phys. Rev. 120 1229
[30] Rahman A 1964 Phys. Rev. 136 A405
[31] Wei S H and Zunger A 1998 Appl. Phys. Lett. 72 2011
[32] Behler J and Parrinello M 2007 Phys. Rev. Lett. 98 146401
[33] Artrith N, Morawietz T and Behler J 2011 Phys. Rev. B 83 153101
[34] Behler J 2014 J. Phys.: Condens. Matter 26 183001
[35] Huang S D, Shang C, Kang P L and Liu Z P 2018 Chem. Sci. 9 8644
[36] Kresse G and Furthmuller J 1996 Comput. Mater. Sci. 6 15
[37] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[38] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[39] Huang S D, Shang C, Kang P L, Zhang X J and Liu Z P 2019 WIREs Comput. Mol. Sci. 9 e1415
[40] Wei S H and Zhang S B 2000 Phys. Rev. B 62 6944
[41] Wright K and Gale J D 2004 Phys. Rev. B 70 035211
[42] Lang L, Zhang Y Y, Xu P, Chen S Y, Xiang H J and Gong X G 2015 Phys. Rev. B 92 075102
[43] Niles D W and Höchst H 1990 Phys. Rev. B 41 12710
[44] Fritsche J, Schulmeyer T, Kraft D, Thissen A, Klein A and Jaegermann W 2002 Appl. Phys. Lett. 81 2297
[45] Gu H J, Zhang Y Y, Chen S Y, Xiang H J and Gong X G 2018 Phys. Rev. B 97 235308
Related articles from Frontiers Journals
[1] Hexu Zhang, Yuanhao Lyu, Wenqi Hu, Lan Chen, Yi-Qi Zhang, and Kehui Wu. Dehydrogenation Induced Formation of Chiral Core-Shell Arrays of Melamine on Ag(111)[J]. Chin. Phys. Lett., 2022, 39(11): 096802
[2] Rongqian Wang, Jincheng Lu, and Jian-Hua Jiang. Moderate-Temperature Near-Field Thermophotovoltaic Systems with Thin-Film InSb Cells[J]. Chin. Phys. Lett., 2021, 38(2): 096802
[3] Ye Tian, Xiaodong Yuan , Dongxia Hu , Wanguo Zheng , and Wei Han . Molecular Dynamics Simulations of the Interface between Porous and Fused Silica[J]. Chin. Phys. Lett., 2020, 37(10): 096802
[4] Qing Han, Qun Cai. Suppressing Effects of Ag Wetting Layer on Surface Conduction of Er Silicide/Si(001) Nanocontacts[J]. Chin. Phys. Lett., 2018, 35(8): 096802
[5] HUANG Zheng-Xing, WANG Li-Ying, BAI Su-Yuan, TANG Zhen-An. Thermal Conductance of Cu and Carbon Nanotube Interface Enhanced by a Graphene Layer[J]. Chin. Phys. Lett., 2015, 32(08): 096802
[6] LI Jing, YANG Shen-Yuan, LI Shu-Shen. N-Doped Zigzag Graphene Nanoribbons on Si(001): a First-Principles Calculation[J]. Chin. Phys. Lett., 2015, 32(07): 096802
[7] LI Jing, YANG Shen-Yuan, LI Shu-Shen. Structural and Electronic Properties of Zigzag Graphene Nanoribbons on Si(001) Substrates[J]. Chin. Phys. Lett., 2015, 32(02): 096802
[8] ZHANG Li-Sheng, FANG Yan, WANG Pei-Jie. Surface Enhanced Raman Scattering Characterization of the ZnO Films Modified with Silver Quantum Dot[J]. Chin. Phys. Lett., 2012, 29(11): 096802
[9] ZHANG Yang, LI Xue-Hong, PENG Cheng-Xiao. Modification of Photoluminescence Properties of ZnO Island Films by Localized Surface Plasmons[J]. Chin. Phys. Lett., 2012, 29(10): 096802
[10] WANG Ying, SONG Zhong-Xiao, ZHANG Mi-Lin. Performance Improved by Incorporating of Ru Atoms into Zr-Si Diffusion Barrier for Cu Metallization[J]. Chin. Phys. Lett., 2012, 29(9): 096802
[11] LI Deng-Feng **, GUO Zhi-Cheng, LI Bo-Lin, DONG Hui-Ning, XIAO Hai-Yan . Structural and Electronic Properties of Sulfur-Passivated InAs(001) ( 2×6 ) Surface[J]. Chin. Phys. Lett., 2011, 28(8): 096802
[12] HUANG Hai-Chao, WANG Hai-Bo, YAN Dong-Hang. Heterojunction Effect in Weak Epitaxy Growth Thin Films Investigated by Kelvin Probe Force Microscopy[J]. Chin. Phys. Lett., 2010, 27(8): 096802
[13] LI Deng-Feng, XIAO Hai-Yan, XUE Shu-Wen, YANG Li, ZU Xiao-Tao. Surface Structure and Electronic Property of InP(001)-(2×1)S Surface: A First-Principles Study[J]. Chin. Phys. Lett., 2010, 27(4): 096802
[14] YUN Jiang-Ni, ZHANG Zhi-Yong, YAN Jun-Feng, ZHANG Fu-Chun. First Principles Study of Adsorption and Reaction of CO on SrTiO3 (100) Surface: the Role of Surface Oxygen Vacancies[J]. Chin. Phys. Lett., 2010, 27(1): 096802
[15] ZHOU Li-Jun, GUO Jian-Gang, ZHAO Ya-Pu. Size- and Temperature-Dependent Thermal Expansion Coefficient of a Nanofilm[J]. Chin. Phys. Lett., 2009, 26(6): 096802
Viewed
Full text


Abstract