Chin. Phys. Lett.  2020, Vol. 37 Issue (9): 095201    DOI: 10.1088/0256-307X/37/9/095201
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES |
Verification of Energetic-Particle-Induced Geodesic Acoustic Mode in Gyrokinetic Particle Simulations
Yang Chen1,2,3, Wenlu Zhang2,4,3,1,5*, Jian Bao2,3, Zhihong Lin6, Chao Dong2,3, Jintao Cao2,3, and Ding Li2,4,3,5
1School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China
2Beijing National Laboratory for Condensed Matter Physics and Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
3School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
4Songshan Lake Materials Laboratory, Dongguan 523808, China
5CAS Center for Excellence in Ultra-intense Laser Science, Shanghai 201800, China
6Department of Physics and Astronomy, University of California, Irvine, California 92697, USA
Cite this article:   
Yang Chen, Wenlu Zhang, Jian Bao et al  2020 Chin. Phys. Lett. 37 095201
Download: PDF(747KB)   PDF(mobile)(730KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The energetic-particle-induced geodesic acoustic mode (EGAM) is studied using gyrokinetic particle simulations in tokamak plasmas. In our simulations, exponentially growing EGAMs are excited by energetic particles with a slowing-down distribution. The frequencies of EGAMs are always below the frequencies of GAMs, which is due to the non-perturbative contribution of energetic particles (EPs). The mode structures of EGAMs are similar to the corresponding mode structures of GAMs. Our gyrokinetic simulations show that a high EP density can enhance the EGAM growth rate, due to high EP free energy, and that EPs' temperature and the pitch angle of the distribution modify the EGAM frequency/growth rate by means of the resonance condition. Kinetic effects of the thermal electrons barely change the EGAM frequency, and have a weak damping effect on the EGAM. Benchmarks between the gyrokinetic particle simulations and a local EGAM dispersion relation exhibit good agreement in terms of EGAM frequency and growth rate.
Received: 27 May 2020      Published: 01 September 2020
PACS:  52.35.Bj (Magnetohydrodynamic waves (e.g., Alfven waves))  
  52.40.Mj (Particle beam interactions in plasmas)  
  52.30.-q (Plasma dynamics and flow)  
Fund: Supported by the National MCF Energy R&D Program (Grant Nos.  2018YFE0304100, 2018YFE0311300 and 2017YFE0301300), the National Natural Science Foundation of China (Grant Nos.  11675256, 11675257, 11835016, 11875067 and 11705275), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB16010300), the Key Research Program of Frontier Science of the Chinese Academy of Sciences (Grant No. QYZDJ-SSW-SYS016), and the External Cooperation Program of the Chinese Academy of Sciences (Grant No. 112111KYSB20160039).
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/37/9/095201       OR      https://cpl.iphy.ac.cn/Y2020/V37/I9/095201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Yang Chen
Wenlu Zhang
Jian Bao
Zhihong Lin
Chao Dong
Jintao Cao
and Ding Li
[1] Winsor N, Johnson J L and Dawson J M 1968 Phys. Fluids 11 2448
[2] Hasegawa A, Maclennan C G and Kodama Y 1979 Phys. Fluids 22 2122
[3] Lin Z, Hahm T S, Lee W W, Tang W M and White R B 1998 Science 281 1835
[4] Wang G, Ma J, Weiland J and Zagorodny A G 2015 Chin. Phys. Lett. 32 115201
[5] Hamada Y, Nishizawa A, Ido T, Watari T, Kojima M, Kawasumi Y, Narihara K, Toi K and Group J I 2005 Nucl. Fusion 45 81
[6] Lan T, Liu A D, Yu C X, Yan L W, Hong W Y, Zhao K J, Dong J Q, Qian J P, Cheng J, Yu D L et al. 2008 Phys. Plasmas 15 056105
[7] Hasegawa A and Wakatani M 1987 Phys. Rev. Lett. 59 1581
[8] Gao Z 2013 Phys. Plasmas 20 032501
[9] Chakrabarti N, Singh R, Kaw P K and Guzdar P N 2007 Phys. Plasmas 14 052308
[10] Zhang H S and Lin Z 2010 Phys. Plasmas 17 072502
[11] Xu X Q, Xiong Z, Gao Z, Nevins W M and Mckee G R 2008 Phys. Rev. Lett. 100 215001
[12] Zarzoso D, Garbet X, Sarazin Y, Dumont R and Grandgirard V 2012 Phys. Plasmas 19 022102
[13] Wang H, Todo Y and Kim C C 2013 Phys. Rev. Lett. 110 155006
[14] Dorf M, Cohen R H, Dorr M R, Rognlien T D, Hittinger J A, Compton J C, Colella P, Martin D F and Mccorquodale P 2013 Nucl. Fusion 53 063015
[15] Zhang H, Qiu Z, Chen L and Lin Z 2009 Nucl. Fusion 49 125009
[16] Zhiyong Q, Zonca F and Liu C 2011 Plasma Sci. Technol. 13 257
[17] Cao J, Qiu Z and Zonca F 2015 Phys. Plasmas 22 124505
[18] Guo W F, Wang S J and Li J G 2009 Chin. Phys. Lett. 26 045202
[19] Lebedev V B, Yushmanov P N, Diamond P H, Novakovskii S V and Smolyakov A I 1996 Phys. Plasmas 3 3023
[20] Novakovskii S V, Liu C S, Sagdeev R Z and Rosenbluth M N 1997 Phys. Plasmas 4 4272
[21] Qiu Z, Chen L and Zonca F 2009 Plasma Phys. Control. Fusion 51 012001
[22] Bingren S, Jiquan L I and Jiaqi D 2005 Chin. Phys. Lett. 22 1179
[23] Hinton F L and Rosenbluth M N 1999 Plasma Phys. Control. Fusion 41 A653
[24] Liu F, Lin Z, Dong J Q and Zhao K J 2010 Phys. Plasmas 17 112318
[25] Fu G Y 2008 Phys. Rev. Lett. 101 185002
[26] Nazikian R, Fu G Y, Austin M E, Berk H L, Budny R V, Gorelenkov N N, Heidbrink W W, Holcomb C T, Kramer G J et al. 2008 Phys. Rev. Lett. 101 185001
[27] Ido T, Shimizu A, Nishiura M, Nakamura S, Kato S, Nakano H, Yoshimura Y, Toi K et al. 2011 Nucl. Fusion 51 073046
[28] Boswell C, Berk H L, Borba D, Johnson T, Pinches S D and Sharapov S E 2006 Phys. Lett. A 358 154
[29] Berk H L, Boswell C, Borba D, Figueiredo A C A, Johnson T, Nave M F F, Pinches S D, Sharapov S E and Contributors J E 2006 Nucl. Fusion 46 S888
[30] Horvath L, Papp G, Pokol G I, Lauber P, Gabor P, Gude A and Igochine V 2016 Nucl. Fusion 56 112003
[31] Chen W, Ding X T, Yu L M, Ji X Q, Shi Z B, Zhang Y P, Zhong W L, Yuan G L, Dong J Q et al. 2013 Nucl. Fusion 53 113010
[32] Xu M, Zhang J, Zhou T, Duan Y M, Hu L, Li Y, Xu L, Shi T H, Liu Y et al. 2018 Nucl. Fusion 58 096004
[33] Berk H L and Zhou T 2010 Nucl. Fusion 50 035007
[34] Qiu Z, Zonca F and Chen L 2010 Plasma Phys. Control. Fusion 52 095003
[35] Fu G Y 2011 J. Plasma Phys. 77 457
[36] Sasaki M, Itoh K and Itoh S 2011 Plasma Phys. Control. Fusion 53 085017
[37] Kolesnichenko Y I, Lepiavko B S and Lutsenko V V 2013 Plasma Phys. Control. Fusion 55 125007
[38] Ren H and Wang H 2018 Nucl. Fusion 58 046005
[39] Wang H and Todo Y 2013 Phys. Plasmas 20 012506
[40] Wang H, Todo Y, Ido T and Osakabe M 2015 Phys. Plasmas 22 092507
[41] Wang H, Todo Y, Oasakabe M, Ido T and Suzuki Y 2019 Nucl. Fusion 59 096041
[42] Zarzoso D, Sarazin Y, Garbet X, Dumont R, Strugarek A, Abiteboul J, Cartiermichaud T, Dif-Pradalier G, Ghendrih P, Grandgirard V et al. 2013 Phys. Rev. Lett. 110 125002
[43] Hu W, Feng H and Dong C 2018 Chin. Phys. Lett. 35 105201
[44] Hu W, Feng H and Zhang W 2019 Chin. Phys. Lett. 36 085201
[45] Zhang W, Holod I, Lin Z and Xiao Y 2012 Phys. Plasmas 19 022507
[46] Wang Z, Lin Z, Holod I, Heidbrink W W, Tobias B, Zeeland M V and Austin M E 2013 Phys. Rev. Lett. 111 145003
[47] Chen Y, Zhang W, Cheng J, Lin Z, Dong C and Li D 2019 Phys. Plasmas 26 102507
[48] Cheng J, Zhang W, Lin Z, Ding L, Chao D and Cao J 2017 Phys. Plasmas 24 092516
[49] Holod I, Zhang W L, Xiao Y and Lin Z 2009 Phys. Plasmas 16 122307
[50] Lin Z and Chen L 2001 Phys. Plasmas 8 1447
[51] Lin Z, Nishimura Y, Xiao Y, Holod I, Zhang W and Chen L 2007 Plasma Phys. Control. Fusion 49 B163
[52] Xiao Y, Holod I, Wang Z, Lin Z and Zhang T 2015 Phys. Plasmas 22 022516
[53] Gaffey J D 1976 J. Plasma Phys. 16 149
[54] Estradamila C, Candy J and Waltz R E 2006 Phys. Plasmas 13 112303
[55] Chen L 1999 J. Geophys. Res. 104 2421
Related articles from Frontiers Journals
[1] P. W. Shi, Y. R. Yang, W. Chen, Z. B. Shi, Z. C. Yang, L. M. Yu, T. B. Wang, X. X. He, X. Q. Ji, W. L. Zhong, M. Xu, and X. R. Duan. Observation and Simulation of $n=1$ Reversed Shear Alfvén Eigenmode on the HL-2A Tokamak[J]. Chin. Phys. Lett., 2022, 39(10): 095201
[2] Ming Xu, Guoqiang Zhong, Baolong Hao, Wei Shen, Liqun Hu, Wei Chen, Zhiyong Qiu, Xuexi Zhang, Youjun Hu, Yingying Li, Hailin Zhao, Haiqing Liu, Bo Lyu, and the EAST Team. Excitation of RSAEs during Sawteeth-Like Oscillation in EAST[J]. Chin. Phys. Lett., 2021, 38(8): 095201
[3] Liming Yu, Wei Chen, Xiaoquan Ji, Peiwan Shi, Xuantong Ding, Zhongbing Shi, Ruirui Ma, Yumei Hou, Yonggao Li, Jiaxian Li, Jianyong Cao, Wulyu Zhong, Min Xu, and Xuru Duan. Observation of Multiple Broadband Alfvénic Chirping Modes in HL-2A NBI Plasmas[J]. Chin. Phys. Lett., 2021, 38(5): 095201
[4] Yunpeng Zou, V. S. Chan, Wei Chen, Yongqin Wang, Yumei Hou, and Yiren Zhu. Energetic Particle Transport Prediction for CFETR Steady State Scenario Based on Critical Gradient Model[J]. Chin. Phys. Lett., 2021, 38(4): 095201
[5] Shizhao Wei, Yahui Wang, Peiwan Shi, Wei Chen, Ningfei Chen, and Zhiyong Qiu. Nonlinear Coupling of Reversed Shear Alfvén Eigenmode and Toroidal Alfvén Eigenmode during Current Ramp[J]. Chin. Phys. Lett., 2021, 38(3): 095201
[6] Chun-Hua Li, Zhen-Wei Xia, Ya-Ping Wang, Xiao-Hui Zhang. Propagation of Surface Modes in a Warm Non-Magnetized Quantum Plasma System[J]. Chin. Phys. Lett., 2016, 33(10): 095201
[7] S. Hussain, N. Akhtar, N. Mustafa. Magnetosonic Shocks in Ultra-Relativistic Dissipative Degenerate Plasmas[J]. Chin. Phys. Lett., 2016, 33(08): 095201
[8] Qi-Xin Wu, Zhen-Wei Xia, Wei-Hong Yang. Traveling Wave Solutions of the Incompressible Ideal Hall Magnetohydrodynamics[J]. Chin. Phys. Lett., 2016, 33(06): 095201
[9] LIU Yuan-Tao, ZHAO Hua, LI Lei, FENG Yong-Yong. Solution of Magnetohydrodynamic Oscillations in Electrolytes with Ion-Neutral Collisions[J]. Chin. Phys. Lett., 2012, 29(11): 095201
[10] LUAN Qi-Bin, SHI Yi-Peng, and WANG Xiao-Gang. Mode Conversion and Whistler Wave Generation on an Alfvén Resonance Layer in High Beta Plasmas[J]. Chin. Phys. Lett., 2012, 29(8): 095201
[11] GUO Wen-Feng, WANG Shao-Jie, LI Jian-Gang. Numerical Investigation of Finite k Effect on Damping Rate of Geodesic Acoustic Mode in Collisionless Plasmas[J]. Chin. Phys. Lett., 2009, 26(4): 095201
[12] WANG De-Yu. Electron Acceleration by a Finite-Amplitude Solitary Kinetic Alfvén Wave[J]. Chin. Phys. Lett., 2009, 26(1): 095201
[13] HE Jin-Chun, CHEN Zong-Yun, YAN Tian, HUANG Nian-Ning. Inverse Scattering Transform in Squared Spectral Parameter for DNLS Equation under Vanishing Boundary Conditions[J]. Chin. Phys. Lett., 2008, 25(7): 095201
[14] DING Jian, LI Yi, WANG Shui. Numerical Simulation of Solitary Kinetic Alfvén Waves[J]. Chin. Phys. Lett., 2008, 25(7): 095201
[15] WANG De-Yu, SONG Qi-Wu, YANG Lei. Electron Acceleration by Small-Amplitude Solitary Kinetic Alfven Wave in a Low-Beta Plasma[J]. Chin. Phys. Lett., 2008, 25(2): 095201
Viewed
Full text


Abstract