Chin. Phys. Lett.  2020, Vol. 37 Issue (9): 094701    DOI: 10.1088/0256-307X/37/9/094701
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Extended Nernst–Planck Equation Incorporating Partial Dehydration Effect
Zhong Wang1†, Zhiyang Yuan1‡, and Feng Liu1,2*
1State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871, China
2Center for Quantitative Biology, Peking University, Beijing 100871, China
Cite this article:   
Zhong Wang, Zhiyang Yuan, and Feng Liu 2020 Chin. Phys. Lett. 37 094701
Download: PDF(880KB)   PDF(mobile)(857KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Novel ionic transporting phenomena emerge as nanostructures approach the molecular scale. At the sub-2 nm scale, widely used continuum equations, such as the Nernst–Planck equation, break down. Here, we extend the Nernst–Planck equation by adding a partial dehydration effect. Our model agrees with the reported ion fluxes through graphene oxide laminates with sub-2 nm interlayer spacing, outperforming previous models. We also predict that the selectivity sequences of alkali metal ions depend on the geometries of the nanostructures. Our model opens a new avenue for the investigation of the underlying mechanisms in nanofluidics at the sub-2 nm scale.
Received: 30 April 2020      Published: 01 September 2020
PACS:  47.61.-k (Micro- and nano- scale flow phenomena)  
  66.10.Ed (Ionic conduction)  
  62.23.Kn (Nanosheets)  
  81.05.ue (Graphene)  
Fund: Supported by the National Natural Science Foundation of China (Grant No. 11875076).
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/37/9/094701       OR      https://cpl.iphy.ac.cn/Y2020/V37/I9/094701
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Zhong Wang
Zhiyang Yuan
and Feng Liu
[1] Kratochvil H T, Carr J K, Matulef K et al. 2016 Science 353 1040
[2] Liu S and Gonen T 2018 Commun. Biol. 1 38
[3] Nair R R, Wu H A, Jayaram P et al. 2012 Science 335 442
[4] Joshi R K, Carbone P, Wang F C et al. 2014 Science 343 752
[5] Jain T, Rasera B C, Guerrero R J S et al. 2015 Nat. Nanotechnol. 10 1053
[6] Radha B, Esfandiar A, Wang F C et al. 2016 Nature 538 222
[7] Wen Q, Yan D X, Liu F et al. 2016 Adv. Funct. Mater. 26 5796
[8] Abraham J, Vasu K S, Williams C D et al. 2017 Nat. Nanotechnol. 12 546
[9] Esfandiar A, Radha B, Wang F C et al. 2017 Science 358 511
[10] Wang P F, Wang M, Liu F et al. 2018 Nat. Commun. 9 569
[11] Zhang H C, Hou J, Hu Y X et al. 2018 Sci. Adv. 4 eaaq0066
[12] Wang P F, Wang X, Ling Y et al. 2018 Radiat. Meas. 119 80
[13] Feng Y X, Zhang Y C, Ying C F et al. 2015 Genomics Proteomics & Bioinf. 13 4
[14] Wang L D, Boutilier M S H, Kidambi P R et al. 2017 Nat. Nanotechnol. 12 509
[15] Wei N, Peng X S and Xu Z P 2014 ACS Appl. Mater. & Interfaces 6 5877
[16] Sahu S, Di Ventra M and Zwolak M 2017 Nano Lett. 17 4719
[17] Wang M, Shen W H, Ding S Y et al. 2018 Nanoscale 10 18821
[18] Moy G, Corry B, Kuyucak S et al. 2000 Biophys. J. 78 2349
[19] Corry B, Kuyucak S and Chung S H 2000 Biophys. J. 78 2364
[20] Song C and Corry B 2011 PLOS ONE 6 e21204
[21] Chen P R, Xu Z C, Gu Y et al. 2016 Chin. Phys. B 25 086601
[22] Gao Y, Huang J, Liu Y W et al. 2019 Curr. Opin. Electrochem. 13 107
[23] Suk M E and Aluru N R 2014 J. Chem. Phys. 140 084707
[24] Mouterde T, Keerthi A, Poggioli A R et al. 2019 Nature 567 87
[25] Qiao Y and Lu B Z 2016 Chin. Phys. B 25 018705
[26] Gillespie D, Xu L and Meissner G 2014 Biophys. J. 107 2263
[27] Laio A and Torre V 1999 Biophys. J. 76 129
[28] Zwolak M, Lagerqvist J and Di Ventra M 2009 Phys. Rev. Lett. 103 128102
[29] Zwolak M, Wilson J and Di Ventra M 2010 J. Phys.: Condens. Matter 22 454126
[30] Schlaich A, Knapp E W and Netz R R 2016 Phys. Rev. Lett. 117 048001
[31] Fumagalli L, Esfandiar A, Fabregas R et al. 2018 Science 360 1339
[32] Amiri H, Shepard K L, Nuckolls C et al. 2017 Nano Lett. 17 1204
[33] Baimpos T, Shrestha B R, Raman S et al. 2014 Langmuir 30 4322
[34] Eisenman G 1962 Biophys. J. 2 259
[35] Krauss D, Eisenberg B and Gillespie D 2011 Eur. Biophys. J. 40 775
[36] Wu J 1991 Biophys. J. 60 238
[37] Luchinsky D G, Tindjong R, Kaufman I et al. 2009 Phys. Rev. E 80 021925
[38] Ohtaki H and Radnai T 1993 Chem. Rev. 93 1157
[39] Marcus Y 1991 J. Chem. Soc., Faraday Trans. 87 2995
[40] Saxena A and García A E 2015 J. Phys. Chem. B 119 219
[41] Yoo J, Wilson J and Aksimentiev A 2016 Biopolymers 105 752
[42] Hong S, Constans C, Surmani Martins M V et al. 2017 Nano Lett. 17 728
[43] Zhang Z K, Shen W H, Lin L X et al. 2020 Adv. Sci. 7 2000286
[44] Xu W L, Fang C, Zhou F L et al. 2017 Nano Lett. 17 2928
[45] Ren C E, Hatzell K B, Alhabeb M et al. 2015 J. Phys. Chem. Lett. 6 4026
[46] Feng J D, Liu K, Graf M et al. 2016 Nat. Mater. 15 850
[47] Guo Y, Ying Y L, Mao Y Y et al. 2016 Ngewandte Chem.-Int. Ed. 55 15120
[48] Surwade S P, Smirnov S N, Vlassiouk I V et al. 2015 Nat. Nanotechnol. 10 459
Related articles from Frontiers Journals
[1] Yue Wang, Xiaoxiang Yu, Xiao Wan, Nuo Yang, and Chengcheng Deng. Anomalous Impact of Surface Wettability on Leidenfrost Effect at Nanoscale[J]. Chin. Phys. Lett., 2021, 38(9): 094701
[2] Ting-Jian Dong, Cui-Hua Rong, Jia-Chang Liang, Bo Liu, Xiao-Yong Zhao, Dong-Yan Chen, Bin Zhang, Hao Wang, Hai-Bo Li, Shi-Gui Zhang, Yu-Ping Jiang, Bing Luo, Xiao-Wen Zhou, Tao Wang, Xiao Yu, Xiao-Yun Le. Hydrodynamic Effects on Surface Morphology Evolution of Titanium Alloy under Intense Pulsed Ion Beam Irradiation[J]. Chin. Phys. Lett., 2017, 34(5): 094701
[3] Ju-Nan Kuo, Jian-Liang Wu. Microfluidic Channel Fabrication Process Utilizing Nd:YVO$_{4}$ Laser-Melting Technique[J]. Chin. Phys. Lett., 2017, 34(4): 094701
[4] SONG Hong-Qing, YU Ming-Xu, ZHU Wei-Yao, ZHANG Yu, JIANG Shan-Xue. Dynamic Characteristics of Gas Transport in Nanoporous Media[J]. Chin. Phys. Lett., 2013, 30(1): 094701
[5] ZHAO Quan-Liang, YUAN Jie, LIU Hong-Mei, DUAN Zhong-Xia, ZHANG Wen-Tong, QIU Cheng-Jun, CAO Mao-Sheng. Stationary Fluid Dynamic Behaviour of V-Shaped Diffuser/Nozzle Elements for Valveless Micropump[J]. Chin. Phys. Lett., 2008, 25(4): 094701
[6] CHEN Yan-Yan, , YI Hou-Hui, LI Hua-Bing,. Boundary Slip and Surface Interaction: A Lattice Boltzmann Simulation[J]. Chin. Phys. Lett., 2008, 25(1): 094701
[7] LI Xu-Feng, WU Shi-Fa. Influence of Length of Opposing bi-Au Cone-Tips and Different Environment on Field Enhancement in Feed Gap[J]. Chin. Phys. Lett., 2007, 24(10): 094701
Viewed
Full text


Abstract