Chin. Phys. Lett.  2020, Vol. 37 Issue (7): 077502    DOI: 10.1088/0256-307X/37/7/077502
Ferromagnetic MnSn Monolayer Epitaxially Grown on Silicon Substrate
Qian-Qian Yuan1, Zhaopeng Guo1, Zhi-Qiang Shi1, Hui Zhao1, Zhen-Yu Jia1, Qianjin Wang1, Jian Sun1,2, Di Wu1,2, and Shao-Chun Li1,2,3*
1National Laboratory of Solid State Microstructures, School of Physics, Nanjing University, Nanjing 210093, China
2Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
3Jiangsu Provincial Key Laboratory for Nanotechnology, Nanjing University, Nanjing 210093, China
Cite this article:   
Qian-Qian Yuan, Zhaopeng Guo, Zhi-Qiang Shi et al  2020 Chin. Phys. Lett. 37 077502
Download: PDF(2498KB)   PDF(mobile)(4507KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Two-dimensional (2D) ferromagnetic materials have been exhibiting promising potential in applications, such as spintronics devices. To grow epitaxial magnetic films on silicon substrate, in the single-layer limit, is practically important but challenging. In this study, we realized the epitaxial growth of MnSn monolayer on Si(111) substrate, with an atomically thin Sn/Si(111)-$2\sqrt 3 \times 2\sqrt 3$-buffer layer, and controlled the MnSn thickness with atomic-layer precision. We discovered the ferromagnetism in MnSn monolayer with the Curie temperature ($T_{\rm c}$) of ${\sim} 54$ K. As the MnSn film is grown to 4 monolayers, $T_{\rm c}$ increases accordingly to ${\sim} 235$ K. The lattice of the epitaxial MnSn monolayer as well as the Sn/Si(111)-$2\sqrt 3 \times 2\sqrt 3$ is perfectly compatible with silicon, and thus an sharp interface is formed between MnSn, Sn and Si. This system provides a new platform for exploring the 2D ferromagnetism, integrating magnetic monolayers into silicon-based technology, and engineering the spintronics heterostructures.
Received: 30 April 2020      Published: 07 June 2020
PACS:  75.70.Ak (Magnetic properties of monolayers and thin films)  
  75.70.-i (Magnetic properties of thin films, surfaces, and interfaces)  
  81.15.Hi (Molecular, atomic, ion, and chemical beam epitaxy)  
  68.37.Ef (Scanning tunneling microscopy (including chemistry induced with STM))  
Fund: This work was supported by the National Natural Science Foundation of China (Grant Nos. 11774149, 11790311, 11574133, and 11834006) and the National Key R&D Program of China (Grant Nos. 2016YFA0300404, 2015CB921202, and 2014CB921103).
URL:       OR
E-mail this article
E-mail Alert
Articles by authors
Qian-Qian Yuan
Zhaopeng Guo
Zhi-Qiang Shi
Hui Zhao
Zhen-Yu Jia
Qianjin Wang
Jian Sun
Di Wu
and Shao-Chun Li
[1] Ma Y, Dai Y, Guo M, Niu C, Zhu Y and Huang B 2012 ACS Nano 6 1695
[2] Deng Y, Yu Y, Song Y, Zhang J, Wang N Z, Sun Z, Yi Y, Wu Y Z, Wu S, Zhu J, Wang J, Chen X H and Zhang Y 2018 Nature 563 94
[3] Gutfleisch O, Willard M A, Brück E, Chen C H, Sankar S G and Liu J P 2011 Adv. Mater. 23 821
[4] Gregg J F 2007 Nat. Mater. 6 798
[5]Zhang Y, Zhao W S, Klein J O, Kang W, Querlioz D, Zhang Y G, Ravelosona D and Chappert C 2014 Des Aut Test Europe
[6] Zhong D, Seyler K L, Linpeng X, Cheng R, Sivadas N, Huang B, Schmidgall E, Taniguchi T, Watanabe K, McGuire M A, Yao W, Xiao D, Fu K C and Xu X 2017 Sci. Adv. 3 e1603113
[7] Katmis F, Lauter V, Nogueira F S, Assaf B A, Jamer M E, Wei P, Satpati B, Freeland J W, Eremin I, Heiman D, Jarillo-Herrero P and Moodera J S 2016 Nature 533 513
[8] Lee C, Katmis F, Jarillo-Herrero P, Moodera J S and Gedik N 2016 Nat. Commun. 7 12014
[9] Tedrow P M and Meservey R 1971 Phys. Rev. Lett. 26 192
[10] Tedrow P M and Meservey R 1973 Phys. Rev. B 7 318
[11]Fabian A M A J , Ertler C, Stano P and Žutić I 2007 Acta Phys. Slovaca 57 565
[12] Scholz M R, Sánchez-Barriga J, Marchenko D, Varykhalov A, Volykhov A, Yashina L V and Rader O 2012 Phys. Rev. Lett. 108 256810
[13] Essin A M, Moore J E and Vanderbilt D 2009 Phys. Rev. Lett. 102 146805
[14] Nadj-Perge S, Drozdov I K, Li J, Chen H, Jeon S, Seo J, MacDonald A H, Bernevig B A and Yazdani A 2014 Science 346 602
[15] Linder J and Robinson J W A 2015 Nat. Phys. 11 307
[16] Wang Z, Tang C, Sachs R, Barlas Y and Shi J 2015 Phys. Rev. Lett. 114 016603
[17] Leutenantsmeyer J C, Kaverzin A A, Wojtaszek M and van Wees B J 2016 2D Mater. 4 014001
[18] Zhang S H and Liu B G 2018 J. Mater. Chem. C 6 6792
[19] González-Herrero H, Gómez-Rodríguez J M, Mallet P, Moaied M, Palacios J J, Salgado C, Ugeda M M, Veuillen J Y, Yndurain F and Brihuega I 2016 Science 352 437
[20] Červenka J, Katsnelson M I and Flipse C F J 2009 Nat. Phys. 5 840
[21] Huang B, Clark G, Navarro-Moratalla E, Klein D R, Cheng R, Seyler K L, Zhong D, Schmidgall E, McGuire M A, Cobden D H, Yao W, Xiao D, Jarillo-Herrero P and Xu X 2017 Nature 546 270
[22] Gong C, Li L, Li Z, Ji H, Stern A, Xia Y, Cao T, Bao W, Wang C, Wang Y, Qiu Z Q, Cava R J, Louie S G, Xia J and Zhang X 2017 Nature 546 265
[23] Fei Z, Huang B, Malinowski P, Wang W, Song T, Sanchez J, Yao W, Xiao D, Zhu X, May A F, Wu W, Cobden D H, Chu J H and Xu X 2018 Nat. Mater. 17 778
[24] O'Hara D J, Zhu T, Trout A H, Ahmed A S, Luo Y K, Lee C H, Brenner M R, Rajan S, Gupta J A, McComb D W and Kawakami R K 2018 Nano Lett. 18 3125
[25] Mermin N D and Wagner H 1966 Phys. Rev. Lett. 17 1133
[26] Geim A K and Grigorieva I V 2013 Nature 499 419
[27] Liu Z L, Wu X, Shao Y, Qi J, Cao Y, Huang L, Liu C, Wang J O, Zheng Q, Zhu Z L, Ibrahim K, Wang Y L and Gao H J 2018 Sci. Bull. 63 419
[28] Li G, Zhang Y Y, Guo H, Huang L, Lu H, Lin X, Wang Y L, Du S and Gao H J 2018 Chem. Soc. Rev. 47 6073
[29] Bonilla M, Kolekar S, Ma Y, Diaz H C, Kalappattil V, Das R, Eggers T, Gutierrez H R, Phan M H and Batzill M 2018 Nat. Nanotechnol. 13 289
[30] Yu L H, Yao K L, Liu Z L and Zhang Y S 2007 Solid State Commun. 144 18
[31] Li J, Li Y X, Dai X F, Liu H Y and Yu X 2008 Physica B 403 2473
[32] Tan C, Lee J, Jung S G, Park T, Albarakati S, Partridge J, Field M R, McCulloch D G, Wang L and Lee C 2018 Nat. Commun. 9 1554
[33] Qiu Z Q, Pearson J and Bader S D 1991 Phys. Rev. Lett. 67 1646
[34] Zhang R and Willis R F 2001 Phys. Rev. Lett. 86 2665
[35] Fisher M E and Barber M N 1972 Phys. Rev. Lett. 28 1516
[36] O'Hara D J, Zhu T C and Kawakami R K 2018 IEEE Magn. Lett. 9 1
[37] Ortiz Jimenez V, Kalappattil V, Eggers T, Bonilla M, Kolekar S, Thanh Huy P, Batzill M and Phan M H 2019 arXiv:1902.08365 []
Related articles from Frontiers Journals
[1] Shan Li, Jun Lu, Lian-Jun Wen, Dong Pan, Hai-Long Wang, Da-Hai Wei, and Jian-Hua Zhao. Unusual Anomalous Hall Effect in a Co$_{2}$MnSi/MnGa/Pt Trilayer[J]. Chin. Phys. Lett., 2020, 37(7): 077502
[2] Gang Shi, Mingjie Zhang, Dayu Yan, Honglei Feng, Meng Yang, Youguo Shi, Yongqing Li. Anomalous Hall Effect in Layered Ferrimagnet MnSb$_{2}$Te$_{4}$[J]. Chin. Phys. Lett., 2020, 37(4): 077502
[3] Jia-Lin Ma, Hai-Long Wang, Xing-Min Zhang, Shuai Yan, Wen-Sheng Yan, Jian-Hua Zhao. Epitaxial Growth and Magnetic Properties of NiMnAs Films on GaAs Substrates[J]. Chin. Phys. Lett., 2019, 36(1): 077502
[4] Yong-Le Lou, Yu-Ming Zhang, Hui Guo, Da-Qing Xu, Yi-Men Zhang. Effects of Fe-Oxide and Mg Layer Insertion on Tunneling Magnetoresistance Properties of CoFeB/MgO/CoFeB Magnetic Tunnel Junctions[J]. Chin. Phys. Lett., 2016, 33(11): 077502
[5] Shi-Zhu Qiao, Quan-Nian Ren, Run-Run Hao, Hai Zhong, Yun Kang, Shi-Shou Kang, Yu-Feng Qin, Shu-Yun Yu, Guang-Bing Han, Shi-Shen Yan, Liang-Mo Mei. Broad-Band FMR Linewidth of Co2MnSi Thin Films with Low Damping Factor: The Role of Two-Magnon Scattering[J]. Chin. Phys. Lett., 2016, 33(04): 077502
[6] Jian-Hui Yuan, Ni Chen, Hua Mo, Yan Zhang, Zhi-Hai Zhang. Tunneling Negative Magnetoresistance via $\delta$ Doping in a Graphene-Based Magnetic Tunnel Junction[J]. Chin. Phys. Lett., 2016, 33(03): 077502
[7] ZHOU Dong, ZHANG Yin-Feng, MA Xiao-Bai, LIU Shun-Quan, HAN Jing-Zhi, ZHU Ming-Gang, WANG Chang-Sheng, YANG Jin-Bo. Preparation of Highly Textured Bi and MnBi Films by the Pulsed Laser Deposition Method[J]. Chin. Phys. Lett., 2015, 32(12): 077502
[8] JIANG Feng-Xian, ZHAO Ye, ZHOU Guo-Wei, ZHANG Jun, FAN Jiu-Ping, XU Xiao-Hong. Structure and Magnetic Properties of the γ'-Fe4N Films on Cu Underlayers[J]. Chin. Phys. Lett., 2015, 32(08): 077502
[9] QIAO Shi-Zhu, ZHANG Jie, QIN Yu-Feng, HAO Run-Run, ZHONG Hai, ZHU Da-Peng, KANG Yun, KANG Shi-Shou, YU Shu-Yun, HAN Guang-Bing, YAN Shi-Shen, MEI Liang-Mo. Structural and Magnetic Properties of Co2MnSi Thin Film with a Low Damping Constant[J]. Chin. Phys. Lett., 2015, 32(5): 077502
[10] SUN Shao-Hua, WU Ping, XING Peng-Fei . Room-Temperature d0 Ferromagnetism in Nitrogen-Doped In2O3 Films[J]. Chin. Phys. Lett., 2013, 30(7): 077502
[11] ZHOU Cheng, TU Tao, WANG Li, LI Hai-Ou, CAO Gang, GUO Guang-Can, GUO Guo-Ping. Transport through a Gate Tunable Graphene Double Quantum Dot[J]. Chin. Phys. Lett., 2012, 29(11): 077502
[12] WANG Lin-Jun, CAO Gang, TU Tao**, LI Hai-Ou, ZHOU Cheng, HAO Xiao-Jie, GUO Guang-Can, GUO Guo-Ping** . Ground States and Excited States in a Tunable Graphene Quantum Dot[J]. Chin. Phys. Lett., 2011, 28(6): 077502
[13] LU Guang-Duo, ZHANG Huai-Wu, TANG Xiao-Li. Soft Magnetic Thin Films FeCoHfO for High-Frequency Noise Suppression Applications[J]. Chin. Phys. Lett., 2010, 27(9): 077502
[14] XUE Gang, PENG Long, ZHANG Huai-Wu. Effect of Sputtering Parameters on Film Composition, Crystal Structure, and Coercivity of SmCo Based Films Deposited on Si (100) Substrates[J]. Chin. Phys. Lett., 2010, 27(1): 077502
[15] XING Peng-Fei, CHEN Yan-Xue, TANG Min-Jian, YAN Shi-Shen, LIU Guo-Lei, MEI Liang-Mo, JIAO Jun,. Room-Temperature Anisotropic Ferromagnetism in Fe-Doped In2O3 Heteroepitaxial Films[J]. Chin. Phys. Lett., 2009, 26(11): 077502
Full text