Chin. Phys. Lett.  2020, Vol. 37 Issue (4): 047201    DOI: 10.1088/0256-307X/37/4/047201
Negative Magnetoresistance in Antiferromagnetic Topological Insulator EuSn$_2$As$_2$$^{*}$
Huan-Cheng Chen1, Zhe-Feng Lou1, Yu-Xing Zhou1, Qin Chen1, Bin-Jie Xu1, Shui-Jin Chen1, Jian-Hua Du2, Jin-Hu Yang3, Hang-Dong Wang3, Ming-Hu Fang1,4**
1Department of Physics, Zhejiang University, Hangzhou 310027
2Department of Applied Physics, China Jiliang University, Hangzhou 310018
3Department of Physics, Hangzhou Normal University, Hangzhou 310036
4Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093
Cite this article:   
Huan-Cheng Chen, Zhe-Feng Lou, Yu-Xing Zhou et al  2020 Chin. Phys. Lett. 37 047201
Download: PDF(865KB)   PDF(mobile)(849KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The measurements of magnetization, longitudinal and Hall resistivities are carried out on the intrinsic antiferromagnetic (AFM) topological insulator EuSn$_2$As$_2$. It is confirmed that our EuSn$_2$As$_2$ crystal is a heavily hole doping A-type AFM metal with the Néel temperature $T_{\rm N}$ = 24 K, with a metamagnetic transition from an AFM to a ferromagnetic (FM) phase occurring at a certain critical magnetic field for the different field orientations. Meanwhile, we also find that the carrier concentration does not change with the evolution of magnetic order, indicating that the weak interaction between the localized magnetic moments from Eu$^{2+}$ $4f^7$ orbits and the electronic states near the Fermi level. Although the quantum anomalous Hall effect (AHE) is not observed in our crystals, it is found that a relatively large negative magnetoresistance ($-$13%) emerges in the AFM phase, and exhibits an exponential dependence upon magnetic field, whose microscopic origin is waiting to be clarified in future research.
Received: 12 February 2020      Published: 24 March 2020
PACS:  72.15.-v (Electronic conduction in metals and alloys)  
  75.47.-m (Magnetotransport phenomena; materials for magnetotransport)  
  75.50.Ee (Antiferromagnetics)  
Fund: Supported by the National Key Research and Development Program of China under Grant No. 2016YFA0300402, the National Basic Research Program of China under Grant No. 2015CB921004, the National Natural Science Foundation of China under Grant Nos. 11974095 and 11374261, the Zhejiang Natural Science Foundation (No. LY16A040012), and the Fundamental Research Funds for the Central Universities.
URL:       OR
E-mail this article
E-mail Alert
Articles by authors
Huan-Cheng Chen
Zhe-Feng Lou
Yu-Xing Zhou
Qin Chen
Bin-Jie Xu
Shui-Jin Chen
Jian-Hua Du
Jin-Hu Yang
Hang-Dong Wang
Ming-Hu Fang
[1]Mong R S K, Essin A M and Moore J E 2010 Phys. Rev. B 81 245209
[2]Yu R, Zhang W, Zhang H J, Zhang S C, Dai X and Fang Z 2010 Science 329 61
[3]Chang C Z, Zhang J S, Feng X, Shen J, Zhang Z C, Guo M H, Li K, Ou Y B, Wei P, Wang L L, Ji Z Q, Feng Y, Ji S H, Chen X, Jia J F, Dai X, Fang Z, Zhang S C, He K, Wang Y Y, Lu L, Ma X C and Xue Q K 2013 Science 340 167
[4]Checkelsky J G, Yoshimi R, Tsukazaki A, Takahashi K S, Kozuka Y, Falson J, Kawasaki M and Tokura Y 2014 Nat. Phys. 10 731
[5]Kou X F, Guo S T, Fan Y B, Pan L, Lang M R, Jiang Y, Shao Q M, Nie T X, Tang J S, Wang Y, He L, Lee T K, Lee W L and Wang K L 2014 Phys. Rev. Lett. 113 137201
[6]Chang C Z, Zhao W W, Kim D Y, Zhang H J, Assaf B A, Heiman D, Zhang S C, Liu C X, Chan M H W and Moodera J S 2015 Nat. Mater. 14 473
[7]Mogi M, Kawamura M, Yoshimi R, Tsukazaki A, Kozuka Y, Shirakawa N, Takahashi K S, Kawasaki M and Tokura Y 2017 Nat. Mater. 16 516
[8]Zhang D Q, Shi M J, Zhu T S, Xing D Y, Zhang H J and Wang J 2019 Phys. Rev. Lett. 122 206401
[9]Wang J, Lian B, Qi X L and Zhang S C 2015 Phys. Rev. B 92 081107
[10]Gong Y, Guo J W, Li J H, Zhu K J, Liao M H, Liu X Z, Zhang J H, Gu L, Tang L, Feng X, Zhang D, Li W, Song C L, Wang L L, Yu P, Chen X, Wang Y X, Yao H, Duan W H, Xu Y, Zhang S C, Ma X C, Xue Q K and He K 2019 Chin. Phys. Lett. 36 076801
[11]Qi X L, Hughes T L and Zhang S C 2010 Phys. Rev. B 82 184516
[12]Wan X G, Turner A M, Vishwanath A and Savrasov S Y 2011 Phys. Rev. B 83 205101
[13]Xu G, Weng H M, Wang Z J, Dai X, Fang Z 2011 Phys. Rev. Lett. 107 186806
[14]Kübler J and Felser C 2016 Europhys. Lett. 114 47005
[15]Wang Z J, Vergniory M G, Kushwaha S, Hirschberger M, Chulkov E V, Ernst A, Ong N P, Cava R J and Bernevig B A 2016 Phys. Rev. Lett. 117 236401
[16]Chang G Q, Xu S Y, Zheng H, Singh B, Hsu C H, Bian G, Alidoust N, Belopolski I, Sanchez D S, Zhang S T, Lin H and Hasan M Z 2016 Sci. Rep. 6 38839
[17]Zhang J H, Zhang S, Chen Z H, Lv M, Zhao H C, Yang Y F, Chen G F and Sun P J 2018 Chin. Phys. B 27 097103
[18]Wang Q, Du Q H, Petrovic C and Lei H C 2020 Chin. Phys. Lett. 37 027502
[19]Li J H, Wang C, Zhang Z T, Gu B L, Duan W H and Xu Y 2019 Phys. Rev. B 100 121103
[20]Otrokov M M, Rusinov I P, Blanco-Rey M, Hoffmann M, Vyazovskaya A Y, Eremeev S V, Ernst A, Echenique P M, Arnau A and Chulkov E V 2019 Phys. Rev. Lett. 122 107202
[21]Li J H, Li Y, Du S Q, Wang Z, Gu B L, Zhang S C, He K, Duan W H and Xu Y 2019 Sci. Adv. 5 eaaw5685
[22]Otrokov M M, Menshchikova T V, Rusinov I P, Vergniory M G, Kuznetsov V M and Chulkov E V 2017 JETP Lett. 105 297
[23]Xu Y F, Song Z D, Wang Z J, Weng H M and Dai X 2019 Phys. Rev. Lett. 122 256402
[24]Deng Y J, Yu Y J, Shi M Z, Wang J, Chen X H and Zhang Y B 2019 arXiv:1904.11468
[25]Liu C, Wang Y C, Li H, Wu Y, Li Y X, Li J H, He K, Xu Y, Zhang J S and Wang Y Y 2020 Nat. Mater. 19 (in press)
[26]Li H, Gao S Y, Duan S F, Xu Y F, Zhu K J, Tian S J, Gao J C, Fan W H, Rao Z C, Huang J R, Li J J, Yan D Y, Liu Z T, Liu W L, Huang Y B, Li Y L, Liu Y, Zhang G B, Zhang P, Kondo T, Shin S, Lei H C, Shi Y G, Zhang W T, Weng H M, Qian T and Ding H 2019 Phys. Rev. X 9 041039
[27]Arguilla M Q, Cultrara N D, Baum Z J, Jiang S, Ross R D and Goldberger J E 2017 Inorg. Chem. Front. 4 378
[28]Gui X, Pletikosic I, Cao H B, Tien H J, Xu X T, Zhong R D, Wang G Q, Chang T R, Jia S, Valla T, Xie W W and Cava R J 2019 ACS Cent. Sci. 5 900
[29]Kawakami N and Okiji A 1986 J. Phys. Soc. Jpn. 55 2114
[30]Rojas D P, Fernandez J R, Espeso J I and Gómez Sal J C 2010 J. Alloys Compd. 502 275
[31]Yamada H and Takada S 1973 J. Phys. Soc. Jpn. 34 51
[32]Hundley M F, Hawley M, Heffner R H, Jia Q X, Neumeier J J, Tesmer J, Thompson J D and Wu X D 1995 Appl. Phys. Lett. 67 860
[33]Emin D and Liu N L H 1983 Phys. Rev. B 27 4788
Related articles from Frontiers Journals
[1] D. S. Wu, Z. Y. Mi, Y. J. Li, W. Wu, P. L. Li, Y. T. Song, G. T. Liu, G. Li, J. L. Luo. Single Crystal Growth and Magnetoresistivity of Topological Semimetal CoSi[J]. Chin. Phys. Lett., 2019, 36(7): 047201
[2] Hong-Jun Wang, Yuan-Yuan Zhu, Jing Zhou, Yong Liu. Electrical Conductivity of a Single Electro-deposited CoZn Nanowire[J]. Chin. Phys. Lett., 2018, 35(7): 047201
[3] Wei-Ke Wang, Yan Liu, Ji-Yong Yang, Hai-Feng Du, Wei Ning, Lang-Sheng Ling, Wei Tong, Zhe Qu, Zhao-Rong Yang, Ming-Liang Tian, Yu-Heng Zhang. The 45K Onset Superconductivity and the Suppression of the Nematic Order in FeSe by Electrolyte Gating[J]. Chin. Phys. Lett., 2016, 33(05): 047201
[4] WANG Pei-Pei, LONG Yu-Jia, ZHAO Ling-Xiao, CHEN Dong, XUE Mian-Qi, CHEN Gen-Fu. Anisotropic Transport and Magnetic Properties of Charge-Density-Wave Materials RSeTe2 (R = La, Ce, Pr, Nd)[J]. Chin. Phys. Lett., 2015, 32(08): 047201
[5] ZHANG Jin, CHEN Jing-Zhe, CHEN Qing, REN Shang-Fen, HAN Ru-Shan. Inelastic Electron Transport in Monoatomic Wires[J]. Chin. Phys. Lett., 2007, 24(8): 047201
[6] CHEN Ya-Jie, ZHANG Xiao-Yu, CAI Tian-Yi, LI Zhen-Ya,. Hopping and Non-universal Conductivity in Half-Metallic CrO2 Composites[J]. Chin. Phys. Lett., 2003, 20(5): 047201
[7] CHEN Feng, YING Heping, XU Tiefeng, LI Wenzhu,. Electrical Conductivity of the Two-Dimensional Half-Filled Hubbard Model [J]. Chin. Phys. Lett., 1994, 11(1): 047201
Full text