CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Anomalous Hall Effect in Layered Ferrimagnet MnSb$_{2}$Te$_{4}$ |
Gang Shi1,2, Mingjie Zhang1,2, Dayu Yan1,2, Honglei Feng1,2, Meng Yang1,2, Youguo Shi1,2**, Yongqing Li1,2** |
1Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 2School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190
|
|
Cite this article: |
Gang Shi, Mingjie Zhang, Dayu Yan et al 2020 Chin. Phys. Lett. 37 047301 |
|
|
Abstract We report on low-temperature electron transport properties of MnSb$_{2}$Te$_{4}$, a candidate of ferrimagnetic Weyl semimetal. Long-range magnetic order is manifested as a nearly square-shaped hysteresis loop in the anomalous Hall resistance, as well as sharp jumps in the magnetoresistance. At temperatures below 4 K, a ${\rm ln}T$-type upturn appears in the temperature dependence of longitudinal resistance, which can be attributed to the electron-electron interaction (EEI), since the weak localization can be excluded by the temperature dependence of magnetoresistance. Although the anomalous Hall resistance exhibits a similar ${\rm ln}T$-type upturn in the same temperature range, such correction is absent in the anomalous Hall conductivity. Our work demonstrates that MnSb$_{2}$Te$_{4}$ microflakes provide an ideal system to test the theory of EEI correction to the anomalous Hall effect.
|
|
Received: 13 February 2020
Published: 24 March 2020
|
|
PACS: |
73.23.-b
|
(Electronic transport in mesoscopic systems)
|
|
75.47.-m
|
(Magnetotransport phenomena; materials for magnetotransport)
|
|
75.70.Ak
|
(Magnetic properties of monolayers and thin films)
|
|
|
Fund: Supported by the National Natural Science Foundation of China under Grant Nos. 11961141011 and 61425015, the National Key Research and Development Program under Grant No. 2016YFA0300600, and the Strategic Priority Research Program of Chinese Academy of Sciences under Grant No. XDB28000000. |
|
|
[1] | Nagaosa N, Sinova J, Onoda S et al 2010 Rev. Mod. Phys. 82 1539 | [2] | Xiao D, Chang M C and Niu Q 2010 Rev. Mod. Phys. 82 1959 | [3] | Chang C Z, Zhang J S, Feng X et al 2013 Science 340 167 | [4] | Weng H M, Fang C, Fang Z et al 2015 Phys. Rev. X 5 011029 | [5] | Liu E K, Sun Y, Kumar N et al 2018 Nat. Phys. 14 1125 | [6] | Langenfeld A and Wolfle P 1991 Phys. Rev. Lett. 67 739 | [7] | Muttalib K A and Wolfle P 2007 Phys. Rev. B 76 214415 | [8] | Mitra P, Mitra R, Hebard A F et al 2007 Phys. Rev. Lett. 99 046804 | [9] | Yang S, Li Z L, Lin C J et al 2019 Phys. Rev. Lett. 123 096601 | [10] | Bergmann G and Ye F 1991 Phys. Rev. Lett. 67 735 | [11] | Mitra P, Kumar N and Samarth N 2010 Phys. Rev. B 82 035205 | [12] | Lu Y M, Cai J W, Guo Z et al 2013 Phys. Rev. B 87 094405 | [13] | Ding J J, Wu S B, Yang X F et al 2015 Chin. Phys. B 24 027201 | [14] | Wu L, Zhu K, Yue D et al 2016 Phys. Rev. B 93 214418 | [15] | Li S C and Levchenko A 2019 arXiv:1910.09555 | [16] | Gong Y, Guo J, Li J et al 2019 Chin. Phys. Lett. 36 076801 | [17] | Otrokov M M, Rusinov I P, Blanco-Rey M et al 2019 Phys. Rev. Lett. 122 107202 | [18] | Li J H, Li Y, Du S Q et al 2019 Sci. Adv. 5 eaaw5685 | [19] | Zhang D Q, Shi M J, Zhu T S et al 2019 Phys. Rev. Lett. 122 206401 | [20] | Deng Y J, Yu Y J, Shi M Z et al 2020 Science 367 895 | [21] | Liu C, Wang Y C, Li H et al 2020 Nat. Mater. 19 (in press) | [22] | Yan J Q, Zhang Q, Heitmann T et al 2019 Phys. Rev. Mater. 3 064202 | [23] | Murakami T, Nambu Y, Koretsune T et al et al 2019 Phys. Rev. B 100 195103 | [24] | Throughout this work, $R_{xx}$ refers to the sheet longitudinal resistance per square. The corresponding longitudinal resistivity is $\rho_{xx}$=$R_{xx}t$, where $t$ is the sample thickness | [25] | Schiffer P, Ramirez A P, Bao W et al 1995 Phys. Rev. Lett. 75 3336 | [26] | Watts S M, Wirth S, von Molnár S et al 2000 Phys. Rev. B 61 9621 | [27] | Bergmann G 1984 Phys. Rep. 107 1 | [28] | Lee P A and Ramakrishnan T V 1985 Rev. Mod. Phys. 57 287 | [29] | Dietl T and Hideo Ohno H 2014 Rev. Mod. Phys. 86 187 | [30] | Snyder G J, Hiskes R, DiCarolis S et al 1996 Phys. Rev. B 53 14434 | [31] | Dugaev V K, Crepieux A and Bruno P 2001 Phys. Rev. B 64 104411 | [32] | This approximation is valid because $R_{xx}$ is two orders of magnitude larger than $R_{\rm AH }$in MnSb$_{2}$Te$_{4}$. In this work, the AH conductivity $\sigma_{\mathrm{AH}}$ refers to the sheet conductance per square, and hence has a dimension of inverse resistance. It is convenient for discussing the physics at two dimensions. | [33] | Altshuler B L and Aronov A G 1983 Solid State Commun. 46 429 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|