Chin. Phys. Lett.  2020, Vol. 37 Issue (4): 047102    DOI: 10.1088/0256-307X/37/4/047102
Pressure-Induced Metallization and Structural Phase Transition in the Quasi-One-Dimensional TlFeSe$_{2}$
Zi-Yi Liu1,2†, Qing-Xin Dong1,3†, Peng-Fei Shan1,3†, Yi-Yan Wang1,3, Jian-Hong Dai1,3, Rajesh Jana1,3, Ke-Yu Chen1,3, Jian-Ping Sun1,3, Bo-Sen Wang1,3,4, Xiao-Hui Yu1,3,4, Guang-Tong Liu1,3,4, Yoshiya Uwatoko5, Yu Sui2, Huai-Xin Yang1,3,4, Gen-Fu Chen1,3,4**, Jin-Guang Cheng1,3,4**
1Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190
2School of Physics, Harbin Institute of Technology, Harbin 150001
3School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190
4Songshan Lake Materials Laboratory, Dongguan 523808
5Institute for Solid State Physics, University of Tokyo, Kashiwa, Chiba 277-8581, Japan
Cite this article:   
Zi-Yi Liu, Qing-Xin Dong, Peng-Fei Shan et al  2020 Chin. Phys. Lett. 37 047102
Download: PDF(1268KB)   PDF(mobile)(1264KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We report a comprehensive high-pressure study on the monoclinic TlFeSe$_{2}$ single crystal, which is an antiferromagnetic insulator with quasi-one-dimensional crystal structure at ambient pressure. It is found that TlFeSe$_{2}$ undergoes a pressure-induced structural transformation from the monoclinic phase to an orthorhombic structure above $P_{\rm c} \approx 13$ GPa, accompanied with a large volume collapse of $\Delta V/V_{0}=8.3{\%}$. In the low-pressure monoclinic phase, the insulating state is easily metallized at pressures above 2 GPa; while possible superconductivity with $T_{\rm c}^{\rm onset} \sim 2$ K is found to emerge above 30 GPa in the high-pressure phase. Such a great tunability of TlFeSe$_{2}$ under pressure indicates that the ternary $A$FeSe$_{2}$ system ($A$ = Tl, K, Cs, Rb) should be taken as an important platform for explorations of interesting phenomena such as insulator-metal transition, dimensionality crossover, and superconductivity.
Received: 06 March 2020      Published: 13 March 2020
PACS:  71.27.+a (Strongly correlated electron systems; heavy fermions)  
  71.30.+h (Metal-insulator transitions and other electronic transitions)  
  74.62.Fj (Effects of pressure)  
  74.72.Cj (Insulating parent compounds)  
Fund: Supported by the National Key R&D Program of China (2018YFA0305700), the National Natural Science Foundation of China (11904391, 11834016, 11874400, 11888101, 11921004), the Beijing Natural Science Foundation (Z190008), the Strategic Priority Research Program and the Key Research Program of Frontier Sciences of the Chinese Academy of Sciences (XDB25000000, QYZDB-SSW-SLH013), and the CAS Interdisciplinary Innovation Team (JCTD-2019-01). JPS acknowledges the support from the China Postdoctoral Science Foundation and the Postdoctoral Innovative Talent Program.
URL:       OR
E-mail this article
E-mail Alert
Articles by authors
Zi-Yi Liu
Qing-Xin Dong
Peng-Fei Shan
Yi-Yan Wang
Jian-Hong Dai
Rajesh Jana
Ke-Yu Chen
Jian-Ping Sun
Bo-Sen Wang
Xiao-Hui Yu
Guang-Tong Liu
Yoshiya Uwatoko
Yu Sui
Huai-Xin Yang
Gen-Fu Chen
Jin-Guang Cheng
[1]Bednorz J G and Müller K A 1986 Z. Phys. B: Condens. Matter 64 189
[2]Kamihara Y, Watanabe T, Hirano M and Hosono H 2008 J. Am. Chem. Soc. 130 3296
[3]Ren Z A, Lu W, Yang J, Yi W, Shen X L, Li Z C, Che G C, Dong X L, Sun L L, Zhou F and Zhao Z X 2008 Chin. Phys. Lett. 25 2215
[4]Chen X H, Wu T, Wu G, Liu R H, Chen H and Fang D F 2008 Nature 453 761
[5]Norman M R 2011 Science 332 196
[6]Gao M, Lu Z Y and Xiang T 2015 Phys. Rev. B 91 045132
[7]Hu J P, Le C C and Wu X X 2015 Phys. Rev. X 5 041012
[8]Le C C, Zeng J F, Gu Y H, Cao G H and Hu J P 2018 Sci. Bull. 63 957
[9]Qin S S, Li Y X, Zhang Q, Le C C and Hu J P 2018 Front. Phys. 13 137502
[10]Zhao X, Ma F, Lu Z Y and Xiang T 2019 arXiv:1910.03545
[11]Bronger W, Kyas A and Müller P 1987 J. Solid State Chem. 70 262
[12]Asgerov E B, Dang N T, Beskrovnyy A I, Madadzada A I, Ismayilov D I, Mehdiyeva R N, Jabarov S H and Karimova E M 2015 Semiconductors 49 879
[13]Kutoglu A 1974 Naturwissenschaften 61 125
[14]Makovetskii G I and Kasinskii E I 1984 Inorg. Mater. 20 1514
[15]Seidov Z, Krug von Nidda H A, Hemberger J, Loidl A, Sultanov G, Kerimova E and Panfilov A 2001 Phys. Rev. B 65 014433
[16]Veliyev R G 2012 Semiconductors 46 1263
[17]Seidov Z, Krug von Nidda H A, Tsurkan V, Filippova I, Günther A, Najafov A, Aliyev M N, Vagizov F G, Kiiamov A G, Tagirov L R, Gavrilova T and Loidl A 2017 Bull. Russ. Acad. Sci.: Phys. 81 885
[18]Kerimova E M, Seidov F M, Mustafaeva S N and Abdinbekov S S 1999 Inorg. Mater. 35 106
[19]Luo Q, Foyevtsova K, Samolyuk G D, Reboredo F and Dagotto E 2014 Phys. Rev. B 90 035128
[20]Pashkin A, Dressel M and Kuntscher C A 2006 Phys. Rev. B 74 165118
[21]Zhang J, Jia Y, Wang X, Li Z, Duan L, Li W, Zhao J, Cao L, Dai G, Deng Z, Zhang S, Feng S, Yu R, Liu Q, Hu J, Zhu J and Jin C 2019 NPG Asia Mater. 11 60
[22]Cheng J G, Matsubayashi K, Nagasaki S, Hisada A, Hirayama T, Hedo M, Kagi H and Uwatoko Y 2014 Rev. Sci. Instrum. 85 093907
[23]Asgerov E B, Dang N T, Ismayilov D I, Kichanov S E, Mehdiyeva R N, Madadzada A I, Jabarov S H, Kerimova E M and Lukin E V 2015 Mod. Phys. Lett. B 29 1550024
[24]Birch F 1947 Phys. Rev. 71 809
[25]Range K J, Engert G and Weiss A 1969 Solid State Commun. 7 1749
[26]Tinoco T, Polian A, Gomez D and Itie J P 1996 Phys. Status Solidi B 198 433
[27]Welz D, Deppe P, Schaefer W, Sabrowsky H and Rosenberg M 1989 J. Phys. Chem. Solids 50 297
[28]Yuan H Q, Singleton J, Balakirev F F, Baily S A, Chen G F, Luo J L and Wang N L 2009 Nature 457 565
[29]Zhang Q, Li G, Rhodes D, Kiswandhi A, Besara T, Zeng B, Sun J, Siegrist T, Johannes M D and Balicas L 2013 Sci. Rep. 3 1446
[30]Werthamer N R, Helfand E and Hohenberg P C 1966 Phys. Rev. 147 295
[31]Ruan J, Jian S K, Zhang D, Yao H, Zhang H, Zhang S C and Xing D 2016 Phys. Rev. Lett. 116 226801
[32]Gonzalez J and Chervin J C 1993 Jpn. J. Appl. Phys. 32 575
[33]Werner A, Hochheimer H D and Jayaraman A 1981 Phys. Rev. B 23 3836
[34]Nishioka S, Kuriyaki H and Hirakawa K 1995 Synth. Met. 71 1877
[35]Giamarchi T 1991 Phys. Rev. B 44 2905
[36]Balicas L, Behnia K, Kang W, Canadell E, Auban-Senzier P, Jérome D, Ribault M and Fabre J M 1994 J. Phys. I 4 1539
[37]Moser J, Gabay M, Auban-Senzier P, Jerome D, Bechgaard K and Fabre J M 1998 Eur. Phys. J. B 1 39
[38]Dumm M, Loidl A, Fravel B W, Starkey K P, Montgomery L K and Dressel M 2000 Phys. Rev. B 61 511
[39]Jerome D 1982 Mol. Cryst. Liq. Cryst. 79 511
Related articles from Frontiers Journals
[1] Chuang Chen, Xiao Yan Xu, Yang Qi, Zi Yang Meng. Metal to Orthogonal Metal Transition[J]. Chin. Phys. Lett., 2020, 37(4): 047102
[2] Li-Han Chen, Da Wang, Yi Zhou, Qiang-Hua Wang. Superconductivity, Pair Density Wave, and Néel Order in Cuprates[J]. Chin. Phys. Lett., 2020, 37(1): 047102
[3] Haijiang Liu, Yuanji Xu, Yigui Zhong, Jianyu Guan, Lingyuan Kong, Junzhang Ma, Yaobo Huang, Qiuyun Chen, Genfu Chen, Ming Shi, Yi-feng Yang, Hong Ding. Hybridization Effects Revealed by Angle-Resolved Photoemission Spectroscopy in Heavy-Fermion Ce$_{2}$IrIn$_{8}$[J]. Chin. Phys. Lett., 2019, 36(9): 047102
[4] Hui Liang, Shuai Zhang, Yu-Jia Long, Jun-Bao He, Jing Li, Xin-Min Wang, Zhi-An Ren, Gen-Fu Chen. Magnetic and Transport Properties of the Kondo Lattice Compound YbPtAs[J]. Chin. Phys. Lett., 2018, 35(7): 047102
[5] Xin-Bei Xia, Bin Shen, Michael Smidman, Ye Chen, Hanoh Lee, Hui-Qiu Yuan. Tuning the Heavy Fermion State of CeFeGe$_{3}$ by Ru Doping[J]. Chin. Phys. Lett., 2018, 35(6): 047102
[6] Hong-Hua Zhong, Zheng Zhou, Bo Zhu, Yong-Guan Ke, Chao-Hong Lee. Floquet Bound States in a Driven Two-Particle Bose–Hubbard Model with an Impurity[J]. Chin. Phys. Lett., 2017, 34(7): 047102
[7] LI Li, WANG Bao-Tian, ZHANG Ping. Ideal Strengths and Bonding Properties of UO2 under Tension[J]. Chin. Phys. Lett., 2015, 32(03): 047102
[8] LI Hai-Chao, XIANG Yuan-Yuan, WANG Qiang-Hua. Consistency between Itinerant and Local-Moment Pictures for Superconductivity in Alkaline Iron Selenide Superconductors[J]. Chin. Phys. Lett., 2014, 31(06): 047102
[9] YU Zhi-Ming, LIU Yu-Liang. A New Perspective to Study the Correlation Effect of the Three-Dimensional Electron Gas[J]. Chin. Phys. Lett., 2014, 31(1): 047102
[10] WU Quan-Sheng, WANG Yi-Lin, FANG Zhong, DAI Xi. Acceleration of the Stochastic Analytic Continuation Method via an Orthogonal Polynomial Representation of the Spectral Function[J]. Chin. Phys. Lett., 2013, 30(9): 047102
[11] LIU Yu-Liang. An Effective Description of Electron Correlation in the Green Function Approach[J]. Chin. Phys. Lett., 2013, 30(4): 047102
[12] YU Zhi-Ming, GUO Qian, LIU Yu-Liang. New Method to Deal with Three-Dimensional Electron Gas with a Strong Correlation Effect[J]. Chin. Phys. Lett., 2012, 29(12): 047102
[13] AO Bing-Yun**, AI Juan-Juan, GAO Tao**, WANG Xiao-Lin, SHI Peng, CHEN Pi-Heng, YE Xiao-Qiu. Metal-Insulator Transition of Plutonium Hydrides: DFT+U Calculations in the FPLAPW Basis[J]. Chin. Phys. Lett., 2012, 29(1): 047102
[14] WU Xue-Wei, ZHANG Hai-Xin, LIU Xiao-Jun**, ZHANG Xing-Gan** . Optical Properties and Photocatalytic Activity of Marokite-Type CaMn2O4[J]. Chin. Phys. Lett., 2011, 28(10): 047102
[15] WANG Bao-Tian, ZHANG Ping** . Ideal Strengths and Bonding Properties of PuO2 under Tension[J]. Chin. Phys. Lett., 2011, 28(4): 047102
Full text