Chin. Phys. Lett.  2020, Vol. 37 Issue (12): 127801    DOI: 10.1088/0256-307X/37/12/127801
Trion-Facilitated Dexter-Type Energy Transfer in a Cluster of Single Perovskite CsPbBr$_{3}$ Nanocrystals
Zengle Cao1, Fengrui Hu2*, Zaiqin Man2, Chunfeng Zhang1, Weihua Zhang2*, Xiaoyong Wang1*, and Min Xiao1,3
1National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, and School of Physics, Nanjing University, Nanjing 210093, China
2College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China
3Department of Physics, University of Arkansas, Fayetteville, Arkansas 72701, USA
Cite this article:   
Zengle Cao, Fengrui Hu, Zaiqin Man et al  2020 Chin. Phys. Lett. 37 127801
Download: PDF(1544KB)   PDF(mobile)(1529KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Semiconductor colloidal nanocrystals (NCs) can interact with each other to profoundly influence the charge transfer, transport and extraction processes after they have been assembled into a high-density film for optoelectronic device applications. These interactions normally occur among several nearby single colloidal NCs, which should be effectively separated from their surroundings to remove the ensemble average effect for fine optical characterizations. By means of atomic force microscopy (AFM) nanoxerography, here we prepare individual clusters of perovskite CsPbBr$_{3}$ NCs and perform single-particle measurements on their optical properties at the cryogenic temperature. While discrete photoluminescence bands can be resolved from the several single CsPbBr$_{3}$ NCs that are contained within an individual cluster, the shorter- and longer-wavelength bands are dramatically different in that their intensities show sub- and superlinear dependences on the laser excitation powers, respectively. This can be explained by the generation of charged excitons (trions) at high laser excitation powers, and their subsequent Dexter-type energy transfer from smaller- to larger-sized CsPbBr$_{3}$ NCs. Our findings not only suggest that these individual clusters prepared by AFM nanoxerography can serve as a potent platform to explore few-NC interactions but they also reveal the long-neglected role played by trions in channeling photo-excited energies among neighboring NCs.
Received: 15 September 2020      Published: 08 December 2020
PACS:  78.67.Bf (Nanocrystals, nanoparticles, and nanoclusters)  
  71.35.Pq (Charged excitons (trions))  
  78.55.-m (Photoluminescence, properties and materials)  
  36.40.Vz (Optical properties of clusters)  
Fund: Supported by the National Key R&D Program of China (Grant Nos. 2019YFA0308704 and 2017YFA0303700), the National Natural Science Foundation of China (Grant Nos. 61974058, 11574147 and 11621091), and the PAPD of Jiangsu Higher Education Institutions.
URL:       OR
E-mail this article
E-mail Alert
Articles by authors
Zengle Cao
Fengrui Hu
Zaiqin Man
Chunfeng Zhang
Weihua Zhang
Xiaoyong Wang
and Min Xiao
[1] Protesescu L, Yakunin S, Bodnarchuk M I, Krieg F, Caputo R, Hendon C H, Yang R X, Walsh A and Kovalenko M V 2015 Nano Lett. 15 3692
[2] Zhang F, Zhong H, Chen C, Wu X G, Hu X, Huang H, Han J, Zou B and Dong Y 2015 ACS Nano 9 4533
[3] Makarov N S, Guo S, Isaienko O, Liu W, Robel I and Klimov V I 2016 Nano Lett. 16 2349
[4] Canneson D, Shornikova E V, Yakovlev D R, Rogge T, Mitioglu A A, Ballottin M V, Christianen P C M, Lhuillier E, Bayer M and Biadala L 2017 Nano Lett. 17 6177
[5] Iaru C M, Geuchies J J, Koenraad P M, Vanmaekelbergh D and Silov A Y 2017 ACS Nano 11 11024
[6] Yakunin S, Protesescu L, Krieg F, Bodnarchuk M I, Nedelcu G, Humer M, De Luca G, Fiebig M, Heiss W and Kovalenko M V 2015 Nat. Commun. 6 8056
[7] de Weerd C, Gomez L, Zhang H, Buma W J, Nedelcu G, Kovalenko V M and Gregorkiewicz T 2016 J. Phys. Chem. C 120 13310
[8] Zhang H, Fu X, Tang Y, Wang H, Zhang C, Yu W W, Wang X, Zhang Y and Xiao M 2019 Nat. Commun. 10 1088
[9] Rainò G, Becker M A, Bodnarchuk M I, Mahrt R F, Kovalenko M V and Stöferle T 2018 Nature 563 671
[10] Park Y S, Guo S, Makarov N S and Klimov V I 2015 ACS Nano 9 10386
[11] Hu F, Zhang H, Sun C, Yin C, Lv B, Zhang C, Yu W W, Wang X, Zhang Y and Xiao M 2015 ACS Nano 9 12410
[12] Swarnkar A, Chulliyil R, Ravi V K, Irfanullah M, Chowdhury A and Nag A 2015 Angew. Chem. Int. Ed. 54 15424
[13] Zhang A, Dong C and Ren J 2017 J. Phys. Chem. C 121 13314
[14] Rainò G, Nedelcu G, Protesescu L, Bodnarchuk M I, Kovalenko M V, Mahrt R F and Stöferle T 2016 ACS Nano 10 2485
[15] Yin C, Chen L, Song N, Lv Y, Hu F, Sun C, Yu W W, Zhang C, Wang X, Zhang Y and Xiao M 2017 Phys. Rev. Lett. 119 026401
[16] Becker M A, Vaxenburg R, Nedelcu G, Sercel P C, Shabaev A, Mehl M J, Michopoulos J G, Lambrakos S G, Bernstein N, Lyons J L, Stöferle T, Mahrt R F, Kovalenko M V, Norris D J, Rainò G and Efros A L 2018 Nature 553 189
[17] Utzat H, Sun W, Kaplan A E K, Krieg F, Ginterseder M, Spokoyny B, Klein N D, Shulenberger K E, Perkinson C F, Kovalenko M V and Bawendi M G 2019 Science 363 1068
[18] Lv Y, Yin C, Zhang C, Yu W W, Wang X, Zhang Y and Xiao M 2019 Nano Lett. 19 4442
[19] Sanehira E M, Marshall A R, Christians J A, Harvey S P, Ciesielski P N, Wheeler L M, Schulz P, Lin L Y, Beard M C and Luther J M 2017 Sci. Adv. 3 eaao4204
[20] Swarnkar A, Marshall A R, Sanehira E M, Chernomordik B D, Moore D T, Christians J A, Chakrabarti T and Luther J M 2016 Science 354 92
[21] Song J, Li J, Li X, Xu L, Dong Y and Zeng H 2015 Adv. Mater. 27 7162
[22] Wang Y, Li X, Song J, Xiao L, Zeng H and Sun H 2015 Adv. Mater. 27 7101
[23] Ramasamy P, Lim D H, Kim B, Lee S H, Lee M S and Lee J S 2016 Chem. Commun. 52 2067
[24] Yu M and Van O A 2006 Phys. Rev. Lett. 97 237402
[25] Lv B, Zhang H, Wang L, Zhang C, Wang X, Zhang J and Xiao M 2018 Nat. Commun. 9 1536
[26] Cui J, Panfil Y E, Koley S, Shamalia D, Waiskopf N, Remennik S, Popov I, Oded M and Banin U 2019 Nat. Commun. 10 5401
[27] Sharma D K, Hirata S and Vacha M 2019 Nat. Commun. 10 4499
[28] Palleau E, Sangeetha N M, Viau G, Marty J D and Ressier L 2011 ACS Nano 5 4228
[29] Tamarat P, Bodnarchuk M I, Trebbia J B, Erni R, Kovalenko M V, Even J and Lounis B 2019 Nat. Mater. 18 717
[30] Menke S M and Holmes R J 2014 Energy & Environ. Sci. 7 499
[31] Luo X, Lai R, Li Y, Han Y, Liang G, Liu X, Ding T, Wang J and Wu K 2019 J. Am. Chem. Soc. 141 4186
[32] Tisdale W A and Zhu X Y 2011 Proc. Natl. Acad. Sci. USA 108 965
[33] Yettapu G R, Talukdar D, Sarkar S, Swarnkar A, Nag A, Ghosh P and Mandal P 2016 Nano Lett. 16 4838
[34] Choi J J, Luria J, Hyun B R, Bartnik A C, Sun L, Lim Y F, Marohn J A, Wise F W and Hanrath T 2010 Nano Lett. 10 1805
[35] Bae W K, Park Y S, Lim J, Lee D, Padilha L A, McDaniel H, Robel I, Lee C, Pietryga J M and Klimov V I 2013 Nat. Commun. 4 2661
[36] Makarov N S, McDaniel H, Fuke N, Robel I and Klimov V I 2014 J. Phys. Chem. Lett. 5 111
[37] Lin X, Dai X, Pu C, Deng Y, Niu Y, Tong L, Fang W, Jin Y and Peng X 2017 Nat. Commun. 8 1132
Related articles from Frontiers Journals
[1] Jing Zhang, Yong-Gang Xu, Jian-Xin Zhang, Lu-Lu Guan, Yong-Fang Li. Bright-Dark Mode Coupling Model of Plasmons[J]. Chin. Phys. Lett., 2020, 37(3): 127801
[2] Yi-Tao Yang, Chong-Hong Zhang, Chang-Hao Su, Zhao-Nan Ding, Yin Song, Yu-Guang Chen. Aligned Elongation of Ag Nanoparticles Embedded in Silica Irradiated with High Energy Ni Ions[J]. Chin. Phys. Lett., 2018, 35(9): 127801
[3] Si Xiao, Hui Wang, Sheng Liu, Min Li, Ying-Wei Wang, Jia-Zhang Chen, Lu-Hua Guo, Jian-Bo Li, Jun He. Saturable Absorption Enchantment of Au Nanorods Based on Energy Transfer between Longitudinal and Transverse Energy Levels[J]. Chin. Phys. Lett., 2018, 35(6): 127801
[4] Lu-Hua Guo, Ying-Wei Wang, Yong-Qiang Jiang, Si Xiao, Jun He. Dependence of Nonlinear Optical Response of Anatase TiO$_{2}$ on Shape and Excitation Intensity[J]. Chin. Phys. Lett., 2017, 34(7): 127801
[5] Jiang Qin, Peng Lang, Bo-Yu Ji, N. K. Alemayehu, Han-Yan Tao, Xun Gao, Zuo-Qiang Hao, Jing-Quan Lin. Imaging Ultrafast Plasmon Dynamics within a Complex Dolmen Nanostructure Using Photoemission Electron Microscopy[J]. Chin. Phys. Lett., 2016, 33(11): 127801
[6] PENG Xiao-Niu, WANG Ya-Lan, WANG Hao. The Evolution of the Extinction and Growth Mechanism of the Silver Nanoplates[J]. Chin. Phys. Lett., 2015, 32(11): 127801
[7] LI Yong, LING Hong, GAO Lei, SONG Yue-Li, TIAN Ming-Li, ZHOU Feng-Qun. Synthesis, Structure and Optical Properties of CdO Nanocrystals Directly Grown on Cd Foil[J]. Chin. Phys. Lett., 2015, 32(10): 127801
[8] ZHANG Yong, XIE Long-Zhen, LI Hai-Rong, WANG Peng, LIU Su, PENG Ying-Quan, ZHANG Miao. Facile Synthesis of Rose-Like NiO Nanoparticles and Their Ethanol Gas-Sensing Property[J]. Chin. Phys. Lett., 2015, 32(09): 127801
[9] QIN Jiang, JI Bo-Yu, HAO Zuo-Qiang, LIN Jing-Quan. Probing of Ultrafast Plasmon Dynamics on Gold Bowtie Nanostructure Using Photoemission Electron Microscopy[J]. Chin. Phys. Lett., 2015, 32(06): 127801
[10] WANG Xiao-Bo, LI Yong, YAN Ling-Ling, LI Xin-Jian. Temperature-Dependent Photoluminescence from GaN/Si Nanoporous Pillar Array[J]. Chin. Phys. Lett., 2015, 32(5): 127801
[11] WANG Ya-Lan, CHENG Zi-Qiang, MA Liang, PENG Xiao-Niu, HAO Zhong-Hua, WANG Qu-Quan. Power-Dependent Luminescence of CdSe/ZnS Nanocrystal Assembled Layer-by-Layer on a Silver Nanorod Array[J]. Chin. Phys. Lett., 2015, 32(03): 127801
[12] Meisam Omidi, Gh. Amoabediny, F. Yazdian, M. Habibi-Rezaei. Protein Based Localized Surface Plasmon Resonance Gas Sensing[J]. Chin. Phys. Lett., 2015, 32(01): 127801
[13] LI Yong, WANG Xiao-Bo, ZHAO Jin-Chao, LI Xin-Jian. Paths for the Non-radiative Recombination Occurring in CdS:CdO/Si Multi-Interface Nanoheterostructure Array[J]. Chin. Phys. Lett., 2014, 31(07): 127801
[14] Halimah Mohamed. K, Mahmoud Goodarz Naseri, Amir Reza Sadrolhosseini, Arash Dehzangi, Ahmad Kamalianfar, Elias B Saion, Reza Zamiri, Hossein Abastabar Ahangar, Burhanuddin Y. Majlis. Silver Nanoparticle Fabrication by Laser Ablation in Polyvinyl Alcohol Solutions[J]. Chin. Phys. Lett., 2014, 31(07): 127801
[15] LI Yong, WANG Xiao-Bo, FAN Zhi-Qiang, LI Xin-Jian. Temperature-Dependent Photoluminescence of Silicon Nanoporous Pillar Array[J]. Chin. Phys. Lett., 2014, 31(04): 127801
Full text