Chin. Phys. Lett.  2020, Vol. 37 Issue (12): 124202    DOI: 10.1088/0256-307X/37/12/124202
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Hermite Non-Uniformly Correlated Array Beams and Its Propagation Properties
Xue-Chun Zhao1, Lei Zhang1, Rong Lin1,2, Shu-Qin Lin1, Xin-Lei Zhu3, Yang-Jian Cai1,3*, and Jia-Yi Yu1*
1Shandong Provincial Engineering and Technical Center of Light Manipulations & Shandong Provincial Key Laboratory of Optics and Photonic Device, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
2College of Physics and Electronic Engineering, Heze University, Heze 274015, China
3School of Physical Science and Technology, Soochow University, Suzhou 215006, China
Cite this article:   
Xue-Chun Zhao, Lei Zhang, Rong Lin et al  2020 Chin. Phys. Lett. 37 124202
Download: PDF(1957KB)   PDF(mobile)(1957KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We study the evolution of spectral intensity and degree of coherence of a new class of partially coherent beams, Hermite non-uniformly correlated array beams, in free space and in turbulence, based on the extended Huygens–Fresnel integral. Such beams possess controllable rectangular grid distributions due to multi-self-focusing propagation property. Furthermore, it is demonstrated that adjusting the initial beam parameters, mode order, shift parameters, array parameters and correlation width plays a role in resisting intensity and degree of coherence degradation effects of the turbulence.
Received: 28 September 2020      Published: 08 December 2020
PACS:  42.25.-p (Wave optics)  
  42.25.Kb (Coherence)  
  42.25.Bs (Wave propagation, transmission and absorption)  
  42.25.Dd (Wave propagation in random media)  
Fund: Supported by the National Key Research and Development Program of China (Grant No. 2019YFA0705000), the National Natural Science Foundation of China (Grant Nos. 91750201, 11525418, 11947240, 11974218, 12004218, and 11904087), the Local Science and Technology Development Project of the Central Government (Grant No. YDZX20203700001766), and Innovation Group of Jinan (Grant No. 2018GXRC010).
TRENDMD:   
URL:  
http://cpl.iphy.ac.cn/10.1088/0256-307X/37/12/124202       OR      http://cpl.iphy.ac.cn/Y2020/V37/I12/124202
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Xue-Chun Zhao
Lei Zhang
Rong Lin
Shu-Qin Lin
Xin-Lei Zhu
Yang-Jian Cai
and Jia-Yi Yu
[1] Gbur G 2014 J. Opt. Soc. Am. A 31 2038
[2] Wang F, Liu X and Cai Y 2015 Prog. Electromagn. Res. 150 123
[3] Chen Y, Ponomarenko S A and Cai Y 2016 Appl. Phys. Lett. 109 061107
[4] Cai Y, Chen Y, Yu J, Liu X and Liu L 2017 Prog. Opt. 62 157
[5] Gbur G and Wolf E 2002 J. Opt. Soc. Am. A 19 1592
[6] Shirai T, Dogariu A and Wolf E 2003 J. Opt. Soc. Am. A 20 1094
[7] Lajunen H and Saastamoinen T 2013 Opt. Express 21 190
[8] Yu J, Cai Y and Gbur G 2018 Opt. Express 26 27894
[9] Yu J, Zhu X, Lin S, Wang F, Gbur G and Cai Y 2020 Opt. Lett. 45 3824
[10] Gori F and Santarsiero M 2007 Opt. Lett. 32 3531
[11] Gu Y and Gbur G 2013 Opt. Lett. 38 1395
[12] Yu J, Wang F, Liu L, Cai Y and Gbur G 2018 Opt. Express 26 16333
[13] Lin S, Wang C, Zhu X, Lin R, Wang F, Gbur G, Cai Y and Yu J 2020 Opt. Express 28 27238
[14] Cai Y, Chen Y, Eyyuboglu H T and Baykal Y 2007 Appl. Phys. B 88 467
[15] Zhou X, Zhou Z, Tian P and Yuan X 2019 Appl. Opt. 58 9443
[16] Singh R K, Sharma A M and Senthilkumaran P 2015 Opt. Lett. 40 2751
[17] Wan L and Zhao D 2018 Opt. Lett. 43 3554
[18] Mu T, Chen Z, Pacheco S, Wu R, Zhang C and Liang R 2016 Opt. Lett. 41 261
[19] Liang C, Zhu X, Mi C, Peng X, Wang F, Cai Y and Ponomarenko S A 2018 Opt. Lett. 43 3188
[20]Andrews L C and Phillips R L 2005 Laser Beam Propagation through Random Media 2nd edn (Bellinghan: SPIE)
[21] Toselli I, Andrews L C, Phillips R L and F V 2008 Opt. Eng. 47 026003
Related articles from Frontiers Journals
[1] Yingchun Ding, Xinjing Lv, Youquan Jia, Bin Zhang, Zhaoyang Chen, Qiang Liu. Wavefront Shaping for Fast Focusing Light through Scattering Media Based on Parallel Wavefront Optimization and Superpixel Method[J]. Chin. Phys. Lett., 2020, 37(2): 124202
[2] Li-Qi Yu, Xin-Yu Xu, Zhen-Feng Zhang, Qi Feng, Bin Zhang, Ying-Chun Ding, Qiang Liu. Label-Free Microscopic Imaging Based on the Random Matrix Theory in Wavefront Shaping[J]. Chin. Phys. Lett., 2019, 36(11): 124202
[3] Zhao-Wang Wu, Ye-Wan Ma, Li-Hua Zhang, Xun-Chang Yin, Sheng-Bao Zhan. Optical Tunability of Silver-Dielectric-Silver Multi-Layered Cylindrical Nanotubes Using Quasi-Static Approximation[J]. Chin. Phys. Lett., 2018, 35(11): 124202
[4] You-Quan Jia, Qi Feng, Bin Zhang, Wei Wang, Cheng-You Lin, Ying-Chun Ding. Superpixel-Based Complex Field Modulation Using a Digital Micromirror Device for Focusing Light through Scattering Media[J]. Chin. Phys. Lett., 2018, 35(5): 124202
[5] Wan-Xia Huang, Guo-Ren Zhao, Juan-Juan Guo, Mao-Sheng Wang, Jian-Ping Shi. Nearly Perfect Absorbers Operating Associated with Fano Resonance in the Infrared Range[J]. Chin. Phys. Lett., 2016, 33(08): 124202
[6] MA Ye-Wan, WU Zhao-Wang, ZHANG Li-Hua, LIU Wan-Fang, ZHANG Jie. Theoretical Study of Local Surface Plasmon Resonances on a Dielectric-Ag Core-Shell Nanosphere Using the Discrete-Dipole Approximation Method[J]. Chin. Phys. Lett., 2015, 32(09): 124202
[7] DU Ying-Jie, XIE Xiao-Tao, YU Jin-Ying, BAI Jin-Tao. Kuznetsov–Ma Soliton in Coupled Quantum Wells[J]. Chin. Phys. Lett., 2015, 32(07): 124202
[8] HU Jin-Hua, HUANG Yong-Qing, REN Xiao-Min, DUAN Xiao-Feng, LI Ye-Hong, WANG Qi, ZHANG Xia, WANG Jun. Modeling of Fano Resonance in High-Contrast Resonant Grating Structures[J]. Chin. Phys. Lett., 2014, 31(06): 124202
[9] ZENG Xiang-Kai, WEI Lai. Analytic Solutions for the Spectral Responses of RCA-Grating-Based Waveguide Devices[J]. Chin. Phys. Lett., 2012, 29(12): 124202
[10] LING Xiao-Hui, LUO Hai-Lu, TANG Ming, WEN Shuang-Chun. Enhanced and Tunable Spin Hall Effect of Light upon Reflection of One-Dimensional Photonic Crystal with a Defect Layer[J]. Chin. Phys. Lett., 2012, 29(7): 124202
[11] WANG Chun-Fang, BAI Yan-Feng, GUO Hong-Ju, CHENG Jing. Beam Splitting in Induced Inhomogeneous Media[J]. Chin. Phys. Lett., 2012, 29(6): 124202
[12] LU Zhi-Xin, YU Li, **, LIU Bing-Can, , ZHANG Kai, SONG Gang, . Femtosecond Pulse Propagation in a Symmetric Gap Surface Plasmon Polariton Waveguide[J]. Chin. Phys. Lett., 2011, 28(8): 124202
[13] ZHANG Zhi-Wei, **, WEN Ting-Dun, WU Zhi-Fang . A Novel Method for Heightening Sensitivity of Prism Coupler-Based SPR Sensor[J]. Chin. Phys. Lett., 2011, 28(5): 124202
[14] LI Wei, ZHU Ning-Hua, WANG Li-Xian, LIU Jian-Guo, QI Xiao-Qiong, XIE Liang . Harmonic Millimeter Wave Generation and Frequency Up-Conversion Using Optical Injection Locking and Brillouin Selective Sideband Amplification[J]. Chin. Phys. Lett., 2010, 27(10): 124202
[15] MA Ye-Wan, ZHANG Li-Hua, WU Zhao-Wang, ZHANG Jie. Optical Properties of Plasmon Resonances with Ag/SiO2/Ag Multi-Layer Composite Nanoparticles[J]. Chin. Phys. Lett., 2010, 27(6): 124202
Viewed
Full text


Abstract