Chin. Phys. Lett.  2020, Vol. 37 Issue (11): 116201    DOI: 10.1088/0256-307X/37/11/116201
CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
Shear-Banding Evolution Dynamics during High Temperature Compression of Martensitic Ti-6Al-4V Alloy
Xue-Hua Zhang1,2*, Rong Li3, Yong-Qing Zhao1,3*, and Wei-Dong Zeng1
1State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China
2Western Metal Materials Co., LTD, Xi'an 710021, China
3Northwest Institute for Nonferrous Metal Research, Xi'an 710016, China
Cite this article:   
Xue-Hua Zhang, Rong Li, Yong-Qing Zhao et al  2020 Chin. Phys. Lett. 37 116201
Download: PDF(692KB)   PDF(mobile)(684KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The isothermal compression dynamics of ternary Ti-6Al-4V alloy with initial martensitic structures were investigated in the high temperature range 1083–1173 K and moderate strain rate regime 0.01–10 s$^{-1}$. Shear banding was found to still dominate the deformation mechanism of this process, despite its nonadiabatic feature. The constitutive equation was derived with the aid of Zener–Hollomon parameter, which predicted the apparent activation energy as 534.39 kJ/mol. A combination of higher deformation temperature and lower strain rate suppressed the peak flow stress and promoted the evolution of shear bands. Both experiments and calculations demonstrated that a conspicuous temperature rise up to 83 K could be induced by severe plastic deformation. This facilitated the dynamic recrystallization of deformed martensites, as evidenced by the measured microhardness profiles across shear bands.
Received: 04 July 2020      Published: 08 November 2020
PACS:  62.20.F- (Deformation and plasticity)  
  62.20.-x (Mechanical properties of solids)  
  81.40.Ef (Cold working, work hardening; annealing, post-deformation annealing, quenching, tempering recovery, and crystallization)  
  81.40.Lm (Deformation, plasticity, and creep)  
Fund: Supported by the National Natural Science Foundation of China (Grant No. 51471136), and the Fundamental Research Funds for Central Universities.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/37/11/116201       OR      https://cpl.iphy.ac.cn/Y2020/V37/I11/116201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Xue-Hua Zhang
Rong Li
Yong-Qing Zhao
and Wei-Dong Zeng
[1] Gourlay C M and Dahle A K 2007 Nature 445 70
[2] Lewandowski J J and Greer A L 2006 Nat. Mater. 5 15
[3] Quilichini A et al. 2016 J. Geodyn. 101 109
[4] Hassani M, Lagogianni A E and Varnik F 2019 Phys. Rev. Lett. 123 195502
[5] Sun B A et al. 2020 Phys. Rev. B 101 224111
[6] Zheng J, Fu W J and Zhou L W 2013 Chin. Phys. Lett. 30 094701
[7] Li S Z et al. 2016 Appl. Phys. Lett. 108 022901
[8] Avila K E et al. 2020 J. Appl. Phys. 127 115101
[9] Gillam B G et al. 2013 J. Struct. Geol. 54 1
[10] Rolland Y and Rossi 2016 J. Geodyn. 101 88
[11] Bi Z W et al. 2011 Acta Phys. Sin. 60 034502 (in Chinese)
[12] Pan J et al. 2020 Nature 578 559
[13] Wolf H, Koenig D and Triantafyllidis T 2003 J. Struct. Geol. 25 1229
[14] Kroonblawd M P and Fried L E 2020 Phys. Rev. Lett. 124 206002
[15] Sagapuram D et al. 2016 Proc. R. Soc. A 472 20160167
[16] Park J M et al. 2008 Appl. Phys. Lett. 92 091910
[17] Mara N A et al. 2010 Appl. Phys. Lett. 97 021909
[18] Barbot A et al. 2020 Phys. Rev. E 101 033001
[19] Ritter Y and Albe K 2012 J. Appl. Phys. 111 103527
[20] Liu L F et al. 2011 Chin. Phys. Lett. 28 036201
[21] Xue Q, Meyers M A and Nesterenko V F 2002 Acta Mater. 50 575
[22] Zhang Z X et al. 2017 J. Alloys Compd. 718 170
[23] Meier M L, Lesuer D R and Mukherjee A K 1991 Mater. Sci. & Eng. A 136 71
[24] Shafaat M A, Omidvar H and Fallah B 2011 Mater. & Des. 32 4689
[25] Liao S C and Duffy J 1998 J. Mech. Phys. Solids 46 2201
[26] Rittel D, Landau P and Venkert A 2008 Phys. Rev. Lett. 101 165501
[27] Kim Y et al. 2016 J. Alloys Compd. 676 15
[28] Zhang X H, Zhao Y Q and Zeng W D 2019 Mater. Lett. 255 126504
[29] Wang B F 2008 J. Mater. Sci. 43 1576
[30] Nieto-Fuentes et al. 2019 Phys. Rev. Lett. 123 255502
Related articles from Frontiers Journals
[1] Dong-Mei Li, Lan-Sheng Chen, Peng Yu, Ding Ding, and Lei Xia. A New Cu-Based Metallic Glass Composite with Excellent Mechanical Properties[J]. Chin. Phys. Lett., 2020, 37(8): 116201
[2] Xiang-Yue Liu, Hong Zhang, Xin-Lu Cheng. Interaction between Dislocation and Twinning Boundary under Incremental Loading in $\alpha$-Titanium[J]. Chin. Phys. Lett., 2018, 35(11): 116201
[3] Ying Yu, Chao Li, Hong-Hao Ma, Mei-Lan Qi, Sheng-Nian Luo. Deformation and Spallation of Explosive Welded Steels under Gas Gun Shock Loading[J]. Chin. Phys. Lett., 2018, 35(1): 116201
[4] Lun Xiong, Li-Gang Bai, Xiao-Dong Li, Jing Liu. Radial X-Ray Diffraction Study of Static Strength of Tantalum to 80GPa[J]. Chin. Phys. Lett., 2017, 34(10): 116201
[5] Jian-Qiao Hu, Zhan-Li Liu, Yi-Nan Cui, Feng-Xian Liu, Zhuo Zhuang. A New View of Incipient Plastic Instability during Nanoindentation[J]. Chin. Phys. Lett., 2017, 34(4): 116201
[6] Wei-Dong Cheng, Chuan-Hui Ren, Xiao-Hua Gu, Zhao-Jun Wu, Xue-Qing Xing, Guang Mo, Zhong-Jun Chen, Zhong-Hua Wu. Microstructural Changes of Graphene/PLA/PBC Nanofibers by Electrospinning during Tensile Tests[J]. Chin. Phys. Lett., 2017, 34(3): 116201
[7] Xu Zhang, Xiang-Cheng Zhang, Qian Li, Fu-Lin Shang. Strain Avalanches in Microsized Single Crystals: Avalanche Size Predicted by a Continuum Crystal Plasticity Model[J]. Chin. Phys. Lett., 2016, 33(10): 116201
[8] Xu Zhang, Zhi Wang, Qian Li, Fu-Lin Shang. Strain Avalanches in Microsized Single Crystals: A Theoretical Study of the Relation between the Avalanche Size and Duration[J]. Chin. Phys. Lett., 2016, 33(09): 116201
[9] Shi-Hua Fu, Yu-Long Cai, Su-Li Yang, Qing-Chuan Zhang, Xiao-Ping Wu. The Mechanism of Critical Strain of Serrated Yielding in Strain Rate Domain[J]. Chin. Phys. Lett., 2016, 33(02): 116201
[10] DONG Yuan-Xiang, ZHANG Guo-Hua, SUN Qi-Cheng, ZHAO Xue-Dan, NIU Xiao-Na. Analysis of Low-Frequency Vibrational Modes and Particle Rearrangements in Marginally Jammed Amorphous Solid under Quasi-Static Shear[J]. Chin. Phys. Lett., 2015, 32(12): 116201
[11] ZHANG Xu, SHANG Fu-Lin. The Burst Time Duration in Micropillar Deformation[J]. Chin. Phys. Lett., 2014, 31(2): 116201
[12] WANG Yin, ZHOU Jin-Xiong, WU Xiao-Hong, LI Bo, ZHANG Ling. Energy Diagrams of Dielectric Elastomer Generators under Different Types of Deformation[J]. Chin. Phys. Lett., 2013, 30(6): 116201
[13] ZHOU Kai, LI Hui, WANG Zhu . Plastic Deformation of Nanocrystalline Zinc Investigated by Positron Annihilation Lifetime Spectroscopy[J]. Chin. Phys. Lett., 2013, 30(5): 116201
[14] CUI Yi-Nan, LIU Zhan-Li, ZHUANG Zhuo. Dislocation Multiplication by Single Cross Slip for FCC at Submicron Scales[J]. Chin. Phys. Lett., 2013, 30(4): 116201
[15] YUE Yong-Hai, WANG Li-Hua, ZHANG Ze, HAN Xiao-Dong. Cross-over of the Plasticity Mechanism in Nanocrystalline Cu[J]. Chin. Phys. Lett., 2012, 29(6): 116201
Viewed
Full text


Abstract