Chin. Phys. Lett.  2020, Vol. 37 Issue (11): 116101    DOI: 10.1088/0256-307X/37/11/116101
CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
Tuning the Water Desalination Performance of Graphenic Layered Nanomaterials by Element Doping and Inter-Layer Spacing
Fuxin Wang1, Chao Zhang2, Yanmei Yang3, Yuanyuan Qu1*, Yong-Qiang Li1, Baoyuan Man2, and Weifeng Li1*
1School of Physics and State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
2Collaborative Innovation Center of Light Manipulations and Applications, Shandong Normal University, Jinan 250358, China
3College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes (Ministry of Education), Shandong Normal University, Jinan 250014, China
Cite this article:   
Fuxin Wang, Chao Zhang, Yanmei Yang et al  2020 Chin. Phys. Lett. 37 116101
Download: PDF(1050KB)   PDF(mobile)(1033KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Through atomic molecular dynamics simulations, we investigate the performance of two graphenic materials, boron (BC$_{3}$) and nitrogen doped graphene (C$_{3}$N), for seawater desalination and salt rejection, and take pristine graphene as a control. Effects of inter-layer separation have been explored. When water is filtered along the transverse directions of three-layered nanomaterials, the optimal inter-layer separation is 0.7–0.9 nm, which results in high water permeability and salt obstruction capability. The water permeability is considerably higher than porous graphene filter, and is about two orders of magnitude higher than commercial reverse osmosis (RO) membrane. By changing the inter-layer spacing, the water permeability of three graphenic layered nanomaterials follows an order of C$_{3}$N $\ge$ GRA $>$ BC$_{3}$ under the same working conditions. Amongst three nanomaterials, BC$_{3}$ is more sensitive to inter-layer separation which offers a possibility to control the water desalination speed by mechanically changing the membrane thickness. This is caused by the intrinsic charge transfer inside BC$_{3}$ that results in periodic distributed water clusters around the layer surface. Our present results reveal the high potentiality of multi-layered graphenic materials for controlled water desalination. It is hopeful that the present work can guide design and fabrication of highly efficient and tunable desalination architectures.
Received: 21 July 2020      Published: 08 November 2020
PACS:  61.20.Ja (Computer simulation of liquid structure)  
  31.15.xv (Molecular dynamics and other numerical methods)  
  81.05.ue (Graphene)  
Fund: Supported by the National Natural Science Foundation of China (Grant No. 11874238), the Basic Research Project of Natural Science Foundation of Shandong Province (Grant No. ZR2018MA034), and Collaborative Innovation Funds of Shandong Normal University.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/37/11/116101       OR      https://cpl.iphy.ac.cn/Y2020/V37/I11/116101
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Fuxin Wang
Chao Zhang
Yanmei Yang
Yuanyuan Qu
Yong-Qiang Li
Baoyuan Man
and Weifeng Li
[1]Shannon M A, Bohn P W, Elimelech M, Georgiadis J G, Marinas B J and Mayes A M 2010 Science and Technology for Water Purification in the Coming Decades in Nanoscience and Technology: A Collection of Reviews from Nature Journals (Singapore: World Scientific)
[2] Elimelech M and Phillip W A 2011 Science 333 712
[3] Xu G R, Wang S H, Zhao H L, Wu S B, Xu J M, Li L and Liu X Y 2015 J. Membr. Sci. 493 428
[4] Loeb S 1962 Adv. Chem. 38 117
[5] Sint K, Wang B and Král P 2008 J. Am. Chem. Soc. 130 16448
[6] Suk M E and Aluru N R 2010 J. Phys. Chem. Lett. 1 1590
[7] Wang E N and Karnik R 2012 Nat. Nanotechnol. 7 552
[8] Lee K P, Arnot T and Mattia D 2011 J. Membr. Sci. 370 1
[9] Zhang J, Chen C, Pan J, Zhang L, Liang L, Kong Z, Wang X, Zhang W, Shen J 2020 Phys. Chem. Chem. Phys. 22 7224
[10] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
[11] Cohentanugi D and Grossman J C 2015 Desalination 366 59
[12] Mahmoud K A, Mansoor B, Mansour A and Khraisheh M K 2015 Desalination 356 208
[13] Cohen-Tanugi D and Grossman J C 2012 Nano Lett. 12 3602
[14] Konatham D, Yu J, Ho T A and Striolo A 2013 Langmuir 29 11884
[15] Cohentanugi D and Grossman J C 2014 Nano Lett. 14 6171
[16] Li T, Tu Q and L S 2019 Desalination 451 182
[17] Ohern S C, Stewart C A, Boutilier M S H, Idrobo J C, Bhaviripudi S, Das S K, Kong J, Laoui T, Atieh M A and Karnik R 2012 ACS Nano 6 10130
[18] O'Hern S C, Boutilier M S, Idrobo J C, Song Y, Kong J, Laoui T, Atieh M and Karnik R 2014 Nano Lett. 14 1234
[19] Li W, Yang Y, Weber J K, Zhang G and Zhou R 2016 ACS Nano 10 1829
[20] Yang Y, Li W, Zhou H, Zhang X and Zhao M 2016 Sci. Rep. 6 29218
[21] Chogani A, Moosavi A and Rahiminejad M 2016 Chem. Prod. Process Model. 11 73
[22] Russo C A and Golovchenko J A 2012 Proc. Natl. Acad. Sci. USA 109 5953
[23] Boutilier M S H, Sun C, Ohern S C, Au H, Hadjiconstantinou N G and Karnik R 2014 ACS Nano 8 841
[24] Xu G R, Xu J M, Su H C, Liu X Y, Zhao H L, Feng H J and Das R 2019 Desalination 451 18
[25] Huang L, Zhang M, Li C and Shi G 2015 J. Phys. Chem. Lett. 6 2806
[26] Xue M, Qiu H and Guo W 2013 Nanotechnology 24 505720
[27] Cranford S W, Brommer D B and Buehler M J 2012 Nanoscale 4 7797
[28] Abel M, Clair S, Ourdjini O, Mossoyan M and Porte L 2011 J. Am. Chem. Soc. 133 1203
[29] Deng Q, Pan J, Yin X, Wang X, Zhao L, Kang S G, Jimenez-Cruz C A, Zhou R and Li J 2016 Phys. Chem. Chem. Phys. 18 8140
[30] Winarto, Takaiwa D, Yamamoto E and Yasuoka K 2016 Phys. Chem. Chem. Phys. 18 33310
[31] Holt J K, Park H G, Wang Y M, Stadermann M, Artyukhin A B, Grigoropoulos C P, Noy A and Bakajin O 2006 Science 312 1034
[32] Nair R, Wu H, Jayaram P, Grigorieva I and Geim A 2012 Science 335 442
[33] Kim D W, Choi J, Kim D and Jung H T 2016 J. Mater. Chem. A 4 17773
[34] Radha B, Esfandiar A, Wang F C, Rooney A P, Gopinadhan K, Keerthi A, Mishchenko A, Janardanan A, Blake P, Fumagalli L, Lozada-Hidalgo M, Garaj S, Haigh S J, Grigorieva I V, Wu H A and Geim A K 2016 Nature 538 222
[35] Chen L, Shi G, Shen J, Peng B, Zhang B, Wang Y, Bian F, Wang J, Li D and Qian Z 2017 Nature 550 380
[36] Hu M and Mi B 2013 Environ. Sci. Technol. 47 3715
[37] Sun P, Chen Q, Li X, Liu H, Wang K, Zhong M, Wei J, Wu D, Ma R, Sasaki T and Zhu H 2015 NPG Asia Mater. 7 e162
[38] Chen C, Jia L, Li J, Zhang L, Liang L, Chen E, Kong Z, Wang X, Zhang W and Shen J W 2020 Desalination 491 114560
[39] King T C, Matthews P D, Glass H, Cormack J A, Holgado J P, Leskes M, Griffin J M, Scherman O A, Barker P D and Grey C P 2015 Angew. Chem. Int. Ed. 54 5919
[40] Mortazavi B 2017 Carbon 118 25
[41] Mortazavi B, Shahrokhi M, Raeisi M, Zhuang X, Pereira L F C and Rabczuk T 2019 Carbon 149 733
[42] Shirazi A, Abadi R, Izadifar M, Alajlan N and Rabczuk T 2018 Comput. Mater. Sci. 147 316
[43] Abraham M J, Murtola T, Schulz R, Pall S, Smith J C, Hess B and Lindahl E 2015 SoftwareX 1–2 19
[44] Lindorff-Larsen K, Piana S, Palmo K, Maragakis P, Klepeis J L, Dror R O and Shaw D E 2010 Proteins: Struct. Funct. Bioinf. 78 1950
[45] Deng Y, Wang F, Liu Y, Yang Y, Qu Y, Zhao M, Mu Y and Li W 2020 Nanoscale 12 5217
[46] Berendsen H, Grigera J and Straatsma T 1987 J. Phys. Chem. 91 6269
[47] Hess B, Bekker H, Berendsen H J and Fraaije J G 1997 J. Comput. Chem. 18 1463
[48] Darden T, York D and Pedersen L 1993 J. Chem. Phys. 98 10089
[49] Essmann U, Perera L, Berkowitz M L, Darden T, Lee H and Pedersen L G 1995 J. Chem. Phys. 103 8577
[50] Cohen-Tanugi D and Grossman J C 2014 J. Chem. Phys. 141 074704
[51] Yang Y, Mu L, Chen L, Shi G and Fang H 2019 Phys. Chem. Chem. Phys. 21 7623
[52] Liang S, Wang S, Chen L and Fang H 2020 Sep. Purif. Technol. 241 116738
[53] Li W, Wu W and Li Z 2018 ACS Nano 12 9309
[54] Surwade S P, Smirnov S N, Vlassiouk I V, Unocic R R, Veith G M, Dai S and Mahurin S M 2015 Nat. Nanotechnol. 10 459
[55] Shi Q, Gao H, Zhang Y, Meng Z, Rao D, Su J, Liu Y, Wang Y and Lu R 2018 Carbon 136 21
Related articles from Frontiers Journals
[1] Chenhao Li, Hongtao Liang, Yang Yang, Zhiyong Yu, Xin Zhang, Xiangming Ma, Wenliang Lu, Zhenrong Sun, and Ya Cheng. Ultrafast Modulation of the Molten Metal Surface Tension under Femtosecond Laser Irradiation[J]. Chin. Phys. Lett., 2022, 39(7): 116101
[2] Deyan Sun, Cheng Shang, Zhipan Liu, Xingao Gong. Intrinsic Features of an Ideal Glass[J]. Chin. Phys. Lett., 2017, 34(2): 116101
[3] Zi-Qian Huang, Rong-Yao Yang, Wei-Zhou Jiang, Qi-Lin Zhang. Heating of Nanosized Liquid Water in High-Intensity Terahertz Pulses[J]. Chin. Phys. Lett., 2016, 33(01): 116101
[4] GAO Wei, FENG Shi-Dong, QI Li, ZHANG Shi-Liang, LIU Ri-Ping. Local Five-Fold Symmetry and Diffusion Behavior of Zr64Cu36 Amorphous Alloy Based on Molecular Dynamics[J]. Chin. Phys. Lett., 2015, 32(11): 116101
[5] GAO Yu-Feng, YANG Yang, SUN De-Yan** . Wetting of Liquid Iron in Carbon Nanotubes and on Graphene Sheets: A Molecular Dynamics Study[J]. Chin. Phys. Lett., 2011, 28(3): 116101
[6] YIN Bing, DONG Shun-Le. Molecular Dynamical Simulation of Water/Ice Phase Transitions within Carbon Nanotubes under Various Pressures[J]. Chin. Phys. Lett., 2009, 26(8): 116101
[7] ZHANG Ji-Qiao, PAN Xia-Hui, YU Shou-Wen, FENG Xi-Qiao. Elastic Analysis of Physisorption-Induced Substrate Deformation[J]. Chin. Phys. Lett., 2008, 25(1): 116101
[8] WANG Yan, YUAN Hong-Jun. Molecular Dynamics Simulation of Water Confined in Carbon Nanotubes[J]. Chin. Phys. Lett., 2007, 24(11): 116101
[9] WANG Li, ZHANG Yan-Ning, MAO Xiu-Ming, PENG Chuan-Xiao. Formation of NiZr2 Binary Metallic Glass: Experimental and Molecular Dynamics Analyses[J]. Chin. Phys. Lett., 2007, 24(8): 116101
[10] WANG Yan, DONG Shun-Le. Structural Evolution of Compressing Amorphous Ice[J]. Chin. Phys. Lett., 2007, 24(4): 116101
[11] SUN Yong-Li, SUN Min-Hua, LI Jia-Yun, WANG Ai-Ping, MA Cong-Xiao, CHENG Wei-Dong, LIU Fang. Molecular Dynamics Simulation of Cage Effect in the Glass Transition of Argon[J]. Chin. Phys. Lett., 2006, 23(10): 116101
[12] DONG Shun-Le, WANG Yan. Molecular Dynamical Simulation of Ice Phase Transition: Ice Ih to High-Density Amorphous[J]. Chin. Phys. Lett., 2005, 22(12): 116101
[13] LI Guang-Xu, LIU Chang-Song, ZHU Zhen-Gang. Universal Scaling Law for Atomic Diffusion and Viscosity in Liquid Metals[J]. Chin. Phys. Lett., 2004, 21(12): 116101
[14] LI Wei-Hua, MA Hong-Ru. Effective Depletion Potential of Colloidal Spheres[J]. Chin. Phys. Lett., 2004, 21(6): 116101
[15] HONG Xin-Guo, TAMURA Kozaburo. A Reverse Monte Carlo Study on the Structure of Fluid Hg [J]. Chin. Phys. Lett., 2003, 20(8): 116101
Viewed
Full text


Abstract