Chin. Phys. Lett.  2020, Vol. 37 Issue (11): 110301    DOI: 10.1088/0256-307X/37/11/110301
A Fully Symmetrical Quantum Key Distribution System Capable of Preparing and Measuring Quantum States
Tianqi Dou , Jipeng Wang , Zhenhua Li , Wenxiu Qu , Shunyu Yang , Zhongqi Sun , Fen Zhou , Yanxin Han , Yuqing Huang , and Haiqiang Ma*
School of Science and State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China
Cite this article:   
Tianqi Dou , Jipeng Wang , Zhenhua Li  et al  2020 Chin. Phys. Lett. 37 110301
Download: PDF(1222KB)   PDF(mobile)(1217KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We propose a fully symmetrical QKD system that enables quantum states to be prepared and measured simultaneously without compromising system performance. Over a 25.6 km fiber channel, we demonstrate point-to-point QKD operations with asymmetric Mach–Zehnder interferometer modules. Two interference visibilities of above 99% indicate that the proposed system has excellent stability. Consequently, the scheme not only improves the feasibility of distributing secret keys, but also enables QKD closer to more practical applications.
Received: 17 July 2020      Published: 08 November 2020
PACS:  03.67.Dd (Quantum cryptography and communication security)  
  03.67.Hk (Quantum communication)  
  03.67.-a (Quantum information)  
Fund: Supported by the Fundamental Research Funds for the Central Universities (Grant No. 2019XD-A02), and the State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications (Grant No. IPO2019ZT06).
URL:       OR
E-mail this article
E-mail Alert
Articles by authors
Tianqi Dou 
Jipeng Wang 
Zhenhua Li 
Wenxiu Qu 
Shunyu Yang 
Zhongqi Sun 
Fen Zhou 
Yanxin Han 
Yuqing Huang 
and Haiqiang Ma
[1] Gisin N, Ribordy G, Tittel W and Zbinden H 2002 Rev. Mod. Phys. 74 145
[2] Bennett C H and Brassard G 2020 Theor. Comput. Sci. 560 7
[3] Lo H K, Curty M and Tamaki K 2014 Nat. Photon. 8 595
[4] Lütkenhaus N and Shields A J 2009 New J. Phys. 11 045005
[5] Grünenfelder F, Boaron A, Rusca D, Martin A and Zbinden H 2018 Appl. Phys. Lett. 112 051108
[6] Gan Y H, Wang Y, Bao W S, He R S et al. 2019 Chin. Phys. Lett. 36 040301
[7] Liao S K, Lin J, Ren J G, Liu W Y et al. 2017 Chin. Phys. Lett. 34 090302
[8] Tang G Z, Sun S H and Li C Y 2019 Chin. Phys. Lett. 36 070301
[9] Mao Y, Liu Q, Guo Y, Zhang H and Zhou J 2019 Chin. Phys. Lett. 36 100302
[10] Hwang W Y 2003 Phys. Rev. Lett. 91 057901
[11] Huttner B, Imoto N, Gisin N and Mor T 1995 Phys. Rev. A 51 1863
[12] Brassard G, Lütkenhaus N, Mor T and Sanders B C 2000 Phys. Rev. Lett. 85 1330
[13] Lo H K, Curty M and Qi B 2012 Phys. Rev. Lett. 108 130503
[14] Wang J D, Qin X J, Jiang Y Z, Wang X J et al. 2016 Opt. Express 24 8302
[15] Laing A, Scarani V, Rarity J G and O'Brien J L 2010 Phys. Rev. A 82 012304
[16] Sun S H, Ma H Q, Han J J, Liang L M and Li C Z 2010 Opt. Lett. 35 1203
[17] Lucamarini M, Yuan Z L, Dynes J F and Shields A J 2018 Nature 557 400
[18] Martinez A, Fröhlich B, Dynes J F, Sharpe A W et al. 2018 Appl. Phys. Lett. 113 031107
[19] Boaron A, Boso G, Rusca D, Vulliez C et al. 2018 Phys. Rev. Lett. 121 190502
[20] Korzh B, Lim C C W, Houlmann R, Gisin N et al. 2015 Nat. Photon. 9 163
[21] Fröhlich B, Lucamarini M, Dynes J F, Comandar L C et al. 2017 Optica 4 163
[22] Wang S, Chen W, Yin Z Q, He D Y et al. 2018 Opt. Lett. 43 2030
[23] Pirandola S, Laurenza R, Ottaviani C and Banchi L 2017 Nat. Commun. 8 15043
[24] Chen J P, Zhang C, Liu Y, Jiang C et al. 2020 Phys. Rev. Lett. 124 070501
[25] Sibson P, Erven C, Godfrey M, Miki S et al. 2017 Nat. Commun. 8 13984
[26] Paraı̈so T K, De Marco I, Roger T, Marangon D G et al. 2019 npj Quantum Inf. 5 42
[27] Lo H K, Ma X F and Chen K 2005 Phys. Rev. Lett. 94 230504
[28] Ma X F, Qi B, Zhao Y and Lo H K 2005 Phys. Rev. A 72 012326
[29] Lo H K, Chau H F and Ardehali M 2005 J. Cryptology 18 133
[30] Wei Z C, Wang W L, Zhang Z, Gao M et al. 2013 Sci. Rep. 3 2453
Related articles from Frontiers Journals
[1] Hao Cao, Wenping Ma, Ge Liu, Liangdong Lü, Zheng-Yuan Xue. Quantum Secure Multiparty Computation with Symmetric Boolean Functions[J]. Chin. Phys. Lett., 2020, 37(5): 110301
[2] Yu Mao, Qi Liu, Ying Guo, Hang Zhang, Jian Zhou. Four-State Modulation in Middle of a Quantum Channel for Continuous-Variable Quantum Key Distribution Protocol with Noiseless Linear Amplifier[J]. Chin. Phys. Lett., 2019, 36(10): 110301
[3] Guang-Zhao Tang, Shi-Hai Sun, Chun-Yan Li. Experimental Point-to-Multipoint Plug-and-Play Measurement-Device-Independent Quantum Key Distribution Network[J]. Chin. Phys. Lett., 2019, 36(7): 110301
[4] Ya-Hui Gan, Yang Wang, Wan-Su Bao, Ru-Shi He, Chun Zhou, Mu-Sheng Jiang. Finite-Key Analysis for a Practical High-Dimensional Quantum Key Distribution System Based on Time-Phase States[J]. Chin. Phys. Lett., 2019, 36(4): 110301
[5] Min Xiao, Di-Fang Zhang. Practical Quantum Private Query with Classical Participants[J]. Chin. Phys. Lett., 2019, 36(3): 110301
[6] Cai-Lang Xie, Ying Guo, Yi-Jun Wang, Duan Huang, Ling Zhang. Security Simulation of Continuous-Variable Quantum Key Distribution over Air-to-Water Channel Using Monte Carlo Method[J]. Chin. Phys. Lett., 2018, 35(9): 110301
[7] Jia-Ji Li, Yang Wang, Hong-Wei Li, Peng Peng, Chun Zhou, Mu-Sheng Jiang, Hong-Xin Ma, Lin-Xi Feng, Wan-Su Bao. Passive Decoy-State Reference-Frame-Independent Quantum Key Distribution with Heralded Single-Photon Source[J]. Chin. Phys. Lett., 2017, 34(12): 110301
[8] Sheng-Kai Liao, Jin Lin, Ji-Gang Ren, Wei-Yue Liu, Jia Qiang, Juan Yin, Yang Li, Qi Shen, Liang Zhang, Xue-Feng Liang, Hai-Lin Yong, Feng-Zhi Li, Ya-Yun Yin, Yuan Cao, Wen-Qi Cai, Wen-Zhuo Zhang, Jian-Jun Jia, Jin-Cai Wu, Xiao-Wen Chen, Shan-Cong Zhang, Xiao-Jun Jiang, Jian-Feng Wang, Yong-Mei Huang, Qiang Wang, Lu Ma, Li Li, Ge-Sheng Pan, Qiang Zhang, Yu-Ao Chen, Chao-Yang Lu, Nai-Le Liu, Xiongfeng Ma, Rong Shu, Cheng-Zhi Peng, Jian-Yu Wang, Jian-Wei Pan. Space-to-Ground Quantum Key Distribution Using a Small-Sized Payload on Tiangong-2 Space Lab[J]. Chin. Phys. Lett., 2017, 34(9): 110301
[9] Rui-Ke Chen, Wan-Su Bao, Hai-Ze Bao, Chun Zhou, Mu-Sheng Jiang, Hong-Wei Li. Asymmetric Decoy State Measurement-Device-Independent Quantum Cryptographic Conferencing[J]. Chin. Phys. Lett., 2017, 34(8): 110301
[10] Ying-Ying Zhang, Wan-Su Bao, Hong-Wei Li, Chun Zhou, Yang Wang, Mu-Sheng Jiang. Application of a Discrete Phase-Randomized Coherent State Source in Round-Robin Differential Phase-Shift Quantum Key Distribution[J]. Chin. Phys. Lett., 2017, 34(8): 110301
[11] Ying-Ying Zhang, Wan-Su Bao, Chun Zhou, Hong-Wei Li, Yang Wang, Mu-Sheng Jiang. Round-Robin Differential Phase Shift with Heralded Single-Photon Source[J]. Chin. Phys. Lett., 2017, 34(4): 110301
[12] Min Xiao, Yun-Ru Cao, Xiu-Li Song. Efficient and Secure Authenticated Quantum Dialogue Protocols over Collective-Noise Channels[J]. Chin. Phys. Lett., 2017, 34(3): 110301
[13] Peng Xu, Wan-Su Bao, Hong-Wei Li, Yang Wang, Hai-Ze Bao. Proof of Security of a Semi-Device-Independent Quantum Key Distribution Protocol[J]. Chin. Phys. Lett., 2017, 34(2): 110301
[14] Guang-Zhao Tang, Shi-Hai Sun, Huan Chen, Chun-Yan Li, Lin-Mei Liang. Time-Bin Phase-Encoding Measurement-Device-Independent Quantum Key Distribution with Four Single-Photon Detectors[J]. Chin. Phys. Lett., 2016, 33(12): 110301
[15] Chuan-Qi Liu, Chang-Hua Zhu, Lian-Hui Wang, Lin-Xi Zhang, Chang-Xing Pei. Polarization-Encoding-Based Measurement-Device-Independent Quantum Key Distribution with a Single Untrusted Source[J]. Chin. Phys. Lett., 2016, 33(10): 110301
Full text