GENERAL |
|
|
|
|
A Fully Symmetrical Quantum Key Distribution System Capable of Preparing and Measuring Quantum States |
Tianqi Dou , Jipeng Wang , Zhenhua Li , Wenxiu Qu , Shunyu Yang , Zhongqi Sun , Fen Zhou , Yanxin Han , Yuqing Huang , and Haiqiang Ma* |
School of Science and State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China |
|
Cite this article: |
Tianqi Dou , Jipeng Wang , Zhenhua Li et al 2020 Chin. Phys. Lett. 37 110301 |
|
|
Abstract We propose a fully symmetrical QKD system that enables quantum states to be prepared and measured simultaneously without compromising system performance. Over a 25.6 km fiber channel, we demonstrate point-to-point QKD operations with asymmetric Mach–Zehnder interferometer modules. Two interference visibilities of above 99% indicate that the proposed system has excellent stability. Consequently, the scheme not only improves the feasibility of distributing secret keys, but also enables QKD closer to more practical applications.
|
|
Received: 17 July 2020
Published: 08 November 2020
|
|
PACS: |
03.67.Dd
|
(Quantum cryptography and communication security)
|
|
03.67.Hk
|
(Quantum communication)
|
|
03.67.-a
|
(Quantum information)
|
|
|
Fund: Supported by the Fundamental Research Funds for the Central Universities (Grant No. 2019XD-A02), and the State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications (Grant No. IPO2019ZT06). |
|
|
[1] | Gisin N, Ribordy G, Tittel W and Zbinden H 2002 Rev. Mod. Phys. 74 145 |
[2] | Bennett C H and Brassard G 2020 Theor. Comput. Sci. 560 7 |
[3] | Lo H K, Curty M and Tamaki K 2014 Nat. Photon. 8 595 |
[4] | Lütkenhaus N and Shields A J 2009 New J. Phys. 11 045005 |
[5] | Grünenfelder F, Boaron A, Rusca D, Martin A and Zbinden H 2018 Appl. Phys. Lett. 112 051108 |
[6] | Gan Y H, Wang Y, Bao W S, He R S et al. 2019 Chin. Phys. Lett. 36 040301 |
[7] | Liao S K, Lin J, Ren J G, Liu W Y et al. 2017 Chin. Phys. Lett. 34 090302 |
[8] | Tang G Z, Sun S H and Li C Y 2019 Chin. Phys. Lett. 36 070301 |
[9] | Mao Y, Liu Q, Guo Y, Zhang H and Zhou J 2019 Chin. Phys. Lett. 36 100302 |
[10] | Hwang W Y 2003 Phys. Rev. Lett. 91 057901 |
[11] | Huttner B, Imoto N, Gisin N and Mor T 1995 Phys. Rev. A 51 1863 |
[12] | Brassard G, Lütkenhaus N, Mor T and Sanders B C 2000 Phys. Rev. Lett. 85 1330 |
[13] | Lo H K, Curty M and Qi B 2012 Phys. Rev. Lett. 108 130503 |
[14] | Wang J D, Qin X J, Jiang Y Z, Wang X J et al. 2016 Opt. Express 24 8302 |
[15] | Laing A, Scarani V, Rarity J G and O'Brien J L 2010 Phys. Rev. A 82 012304 |
[16] | Sun S H, Ma H Q, Han J J, Liang L M and Li C Z 2010 Opt. Lett. 35 1203 |
[17] | Lucamarini M, Yuan Z L, Dynes J F and Shields A J 2018 Nature 557 400 |
[18] | Martinez A, Fröhlich B, Dynes J F, Sharpe A W et al. 2018 Appl. Phys. Lett. 113 031107 |
[19] | Boaron A, Boso G, Rusca D, Vulliez C et al. 2018 Phys. Rev. Lett. 121 190502 |
[20] | Korzh B, Lim C C W, Houlmann R, Gisin N et al. 2015 Nat. Photon. 9 163 |
[21] | Fröhlich B, Lucamarini M, Dynes J F, Comandar L C et al. 2017 Optica 4 163 |
[22] | Wang S, Chen W, Yin Z Q, He D Y et al. 2018 Opt. Lett. 43 2030 |
[23] | Pirandola S, Laurenza R, Ottaviani C and Banchi L 2017 Nat. Commun. 8 15043 |
[24] | Chen J P, Zhang C, Liu Y, Jiang C et al. 2020 Phys. Rev. Lett. 124 070501 |
[25] | Sibson P, Erven C, Godfrey M, Miki S et al. 2017 Nat. Commun. 8 13984 |
[26] | Paraı̈so T K, De Marco I, Roger T, Marangon D G et al. 2019 npj Quantum Inf. 5 42 |
[27] | Lo H K, Ma X F and Chen K 2005 Phys. Rev. Lett. 94 230504 |
[28] | Ma X F, Qi B, Zhao Y and Lo H K 2005 Phys. Rev. A 72 012326 |
[29] | Lo H K, Chau H F and Ardehali M 2005 J. Cryptology 18 133 |
[30] | Wei Z C, Wang W L, Zhang Z, Gao M et al. 2013 Sci. Rep. 3 2453 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|