Chin. Phys. Lett.  2019, Vol. 36 Issue (4): 049701    DOI: 10.1088/0256-307X/36/4/049701
GEOPHYSICS, ASTRONOMY, AND ASTROPHYSICS |
Neutrino Emission and Cooling of Dark-Matter-Admixed Neutron Stars
Wen-Bo Ding1**, Zi Yu2, Yan Xu3, Chun-Jian Liu1, Tmurbagan Bao4
1College of Mathematics and Physics, Bohai University, Jinzhou 121000
2College of Science, Nanjing Forestry University, Nanjing 210037
3Changchun Observatory, National Astronomical Observatories, Chinese Academy of Sciences, Changchun 130117
4College of Physics And Electronic Information, Inner Mongolia University for the Nationalities, Tongliao 028043
Cite this article:   
Wen-Bo Ding, Zi Yu, Yan Xu et al  2019 Chin. Phys. Lett. 36 049701
Download: PDF(632KB)   PDF(mobile)(628KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The GW170817 binary neutron star merger event in 2017 has raised great interest in the theoretical research f neutron stars. The structure and cooling properties of dark-matter-admixed neutron stars are studied here using relativistic mean field theory and cooling theories. The non-self-annihilating dark matter (DM) component is assumed to be ideal fermions, among which the weak interaction is considered. The results show that pulsars J1614-2230, J0348+0432 and EXO 0748-676 may all contain DM with the particle mass of 0.2–0.4 GeV. However, it is found that the effect of DM on neutron star cooling is complicated. Light DM particles favor the fast cooling of neutron stars, and the case is converse for middle massive DM. However, high massive DM particles, around 1.0 GeV, make the low mass (around solar mass) neutron star still undergo direct Urca process of nucleons at the core, which leads the DM-admixed stars cool much more quickly than the normal neutron star, and cannot support the direct Urca process with a mass lower than 1.1 times solar mass. Thus, we may conjecture that if small (around solar mass) and super cold (at least surface temperature 5–10 times lower than that of the usual observed data) pulsars are observed, then the star may contain fermionic DM with weak self-interaction.
Received: 26 December 2018      Published: 23 March 2019
PACS:  97.60.Jd (Neutron stars)  
  95.30.Cq (Elementary particle processes)  
  26.60.Dd (Neutron star core)  
  26.60.Kp (Equations of state of neutron-star matter)  
Fund: Supported by the National Natural Science Foundation of China under Grant Nos 11805022, 11265009, 11175077 and 11271055, and the Youth Innovation Promotion Association of the Chinese Academy of Sciences under Grant No 2016056.
TRENDMD:   
URL:  
http://cpl.iphy.ac.cn/10.1088/0256-307X/36/4/049701       OR      http://cpl.iphy.ac.cn/Y2019/V36/I4/049701
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Wen-Bo Ding
Zi Yu
Yan Xu
Chun-Jian Liu
Tmurbagan Bao
[1]Tan A D, Xiao M J, Cui X Y et al 2016 Phys. Rev. Lett. 117 121303
[2]Abdalla H, Abramowski A, Aharonian F et al 2017 Astrophys. J. 850 L22
[3]LIGO Scientific Collaboration and Virgo Collaboration 2017 Phys. Rev. Lett. 119 161101
[4]LIGO Scientific Collaboration and Virgo Collaboration 2017 Astrophys. J. 850 L40
[5]Crisostomi M and Koyama K 2018 Phys. Rev. D 97 021301
[6]Fuller J and Ott C D 2015 Mon. Not. R. Astron. Soc.: Lett. 450 L71
[7]Brayeur L and Tinyakov P 2012 Phys. Rev. Lett. 109 061301
[8]Leung S C, Chu M C and Lin L M 2011 Phys. Rev. D 84 107301
[9]Xiang Q F, Jiang W Z and Zhang D R 2014 Phys. Rev. C 89 025803
[10]Sandin F and Ciarcellut P 2009 Astropart. Phys. 32 278
[11]Zheng H, Sun K J, Chen L W et al 2015 Astrophys. J. 800 141
[12]Li A, Huang F and Xu R X 2012 Astropart. Phys. 37 70
[13]Glendenning N K and Schaner-Bielich J 1999 Phys. Rev. C 60 025803
[14]Ding W B, Liu G Z, Zhu M F et al 2009 Astron. & Astrophys. 506 L13
[15]Ding W B, Liu G Z, Zhu M F et al 2008 Chin. Phys. Lett. 25 458
[16]Ding W B, Li Y and Mi G 2012 Chin. Phys. Lett. 29 092601
[17]Narain G, Schaffner-Bielich J and Mishustin I N 2006 Phys. Rev. D 74 063003
[18]Leinson L B and Perez A 2001 Phys. Lett. B 518 15
[19]Parmar A N, White N E, Giommi P and Gottwald M 1986 Astrophys. J. 308 199
[20]Demorest P B, Pennucci T, Ransom S M et al 2010 Nature 467 1081
[21]Antoniadis J, Freire P C C and Wex N 2013 Science 340 448
[22]Zhang C M, Wang J, Zhao Y H et al 2011 Astron. & Astrophys. 527 A83
[23]Glendenning N K and Moszkowski S A 1991 Phys. Rev. Lett. 67 2414
[24]Yakovlev D G, Gnedin O Y, Kaminker A D and Potekhin A Y 2008 AIP Conf. Proc. 983 379
Related articles from Frontiers Journals
[1] Shuang-Qiang Wang, Na Wang, De-Hua Wang, Lun-Hua Shang. An Explanation for the Undetection of Radio Pulsar in Supernova 1987A[J]. Chin. Phys. Lett., 2017, 34(12): 049701
[2] Yi-Yan Yang, Li Chen, Rong-Feng Linghu, Li-Yun Zhang, Ali TAANI. Constraints on Estimation of Radius of Double Pulsar PSR J0737-3039A and Its Neutron Star Nuclear Matter Composition[J]. Chin. Phys. Lett., 2017, 34(12): 049701
[3] Yan Xu, Xiu-Lin Huang, Cheng-Zhi Liu, Tmurbagan Bao, Guang-Zhou Liu. Effects of Tensor Couplings on Nucleonic Direct URCA Processes in Neutron Star Matter[J]. Chin. Phys. Lett., 2016, 33(09): 049701
[4] H. Panahi, R. Monadi, I. Eghdami. A Gaussian Model for Anisotropic Strange Quark Stars[J]. Chin. Phys. Lett., 2016, 33(07): 049701
[5] QI Bin, ZHANG Nai-Bo, WANG Shou-Yu, SUN Bao-Yuan. Hyperon Effects on the Spin Parameter of Rotating Neutron Stars[J]. Chin. Phys. Lett., 2015, 32(11): 049701
[6] Marina-Aura Dariescu, Ciprian Dariescu, Denisa-Andreea Mihu. Tunneling of Relativistic Bosons Induced by Magnetic Fields in the Magnetar's Crust[J]. Chin. Phys. Lett., 2015, 32(10): 049701
[7] LI Ang. Glitch Crisis or Not: a Microscopic Study[J]. Chin. Phys. Lett., 2015, 32(07): 049701
[8] DING Wen-Bo, E Shan-Shan, YU Zi, ZHANG Qi, QI Zhan-Qiang. Effects of Gravitational Correction on Neutrino Emission from Neutron Stars[J]. Chin. Phys. Lett., 2015, 32(5): 049701
[9] PAN Yuan-Yue, WANG Na, ZHANG Cheng-Min. The Relation between the Magnetic Field and Spin Period of a Millisecond Pulsar[J]. Chin. Phys. Lett., 2013, 30(10): 049701
[10] WANG Hong-Yan, LIU Guang-Zhou, WU Yao-Rui, XU Yan, ZHU Ming-Feng, BAO Tmurbagan, ZHAO En-Guang. Bulk Properties of Hybrid Stars with the Color-Flavor Locked Quark Matter Core[J]. Chin. Phys. Lett., 2013, 30(6): 049701
[11] YAN Yan, CAO Jing, LUO Xin-Lian, SUN Wei-Min, ZONG Hong-Shi. Quark Stars Investigated using an Improved Quasi-Particle Model[J]. Chin. Phys. Lett., 2012, 29(10): 049701
[12] DING Wen-Bo, LI Ying, MI Geng. Influences of Both Δ and Δ0 Particles on the Neutron Star Cooling[J]. Chin. Phys. Lett., 2012, 29(9): 049701
[13] CHEN Yan-Jun, YUAN Ye-Fei. Effects of the Recombination of Nucleons into α-Particles on the R-process in Proto-magnetar Wind[J]. Chin. Phys. Lett., 2012, 29(6): 049701
[14] XU Yan**,LIU Guang-Zhou,WANG Hong-Yan,DING Wen-Bo,ZHAO En-Guang. Influence of σ* and φ Mesons on Λ Hyperon 1S0 Superfluidity in Neutron Star Matter[J]. Chin. Phys. Lett., 2012, 29(5): 049701
[15] PI Chun-Mei, YANG Shu-Hua**, ZHENG Xiao-Ping . Extension of Radiative Viscosity to Superfluid Matter[J]. Chin. Phys. Lett., 2011, 28(10): 049701
Viewed
Full text


Abstract