Chin. Phys. Lett.  2018, Vol. 35 Issue (8): 084302    DOI: 10.1088/0256-307X/35/8/084302
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Effects of Sodium Dodecyl Sulfate on a Single Cavitation Bubble
Qi Wang, Wei-Zhong Chen**, Xun Wang, Tai-Yang Zhao
Key Laboratory of Modern Acoustics (Ministry of Education), Institute of Acoustics, Nanjing University, Nanjing 210093
Cite this article:   
Qi Wang, Wei-Zhong Chen, Xun Wang et al  2018 Chin. Phys. Lett. 35 084302
Download: PDF(571KB)   PDF(mobile)(571KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Dynamics of a single cavitation bubble in sodium dodecyl sulfate (SDS) aqueous solutions is investigated experimentally and theoretically. The bubble pulsation is measured by a phase-locked integrated imaging technique, and the ambient radius is obtained by fitting the numerical calculation based on the Rayleigh–Plesset bubble dynamics model to the experimental data. The results show that, under the same driving condition, the ambient radius of the cavitation bubble decreases correspondingly with the increase of SDS concentration within the critical micelle concentration, while the compression ratio of the radius increases, which indicates that the addition of SDS decreases the internal molecular number of the cavitation bubble and increases the power capability of the cavitation bubble. In addition, bubble oscillation increases the concentration of the surfactant molecules on the bubble wall, so that the effect of SDS on a single cavitation bubble is reduced when the SDS concentration is greater than 0.8 mM.
Received: 08 May 2018      Published: 15 July 2018
PACS:  43.35.+d (Ultrasonics, quantum acoustics, and physical effects of sound)  
  43.25.+y (Nonlinear acoustics)  
Fund: Supported by the National Natural Science Foundation of China under Grant Nos 11334005 and 11574150.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/35/8/084302       OR      https://cpl.iphy.ac.cn/Y2018/V35/I8/084302
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Qi Wang
Wei-Zhong Chen
Xun Wang
Tai-Yang Zhao
[1]Ashokkumar M 2011 Ultrason. Sonochem. 18 864
[2]Rapoport N et al 2007 J. Natl. Cancer. Inst. 99 1095
[3]Tang S Y et al 2012 Ultrason. Sonochem. 19 330
[4]Dular M et al 2016 Ultrason. Sonochem. 29 577
[5]Rayleigh L 1917 Philos. Mag. 34 94
[6]Gaitan D F et al 1992 J. Acoust. Soc. Am. 91 3166
[7]Iida Y et al 2010 Ultrason. Sonochem. 17 473
[8]Huang W, Chen W Z et al 2006 Ultrasonics 44 e407
[9]Wang W J, Chen W Z et al 2003 J. Acoust. Soc. Am. 114 1898
[10]Xu J F, Chen W Z, Xu X H et al 2007 Phys. Rev. E 76 026308
[11]Lee J, Kentish S and Ashokkumar M 2005 J. Phys. Chem. B 109 14595
[12]Fyrillas M M and Szeri A J 1996 J. Fluid Mech. 311 361
Related articles from Frontiers Journals
[1] Jian Li, Hong-Juan Yang, Jun Ma, Xiang Gao, Jun-Hong Li, Jian-Zheng Cheng, Wen Wang, Cheng-Hao Wang. Detection and Location of a Target in Layered Media without Prior Knowledge of Medium Parameters *[J]. Chin. Phys. Lett., 0, (): 084302
[2] Jian Li, Hong-Juan Yang, Jun Ma, Xiang Gao, Jun-Hong Li, Jian-Zheng Cheng, Wen Wang, Cheng-Hao Wang. Detection and Location of a Target in Layered Media without Prior Knowledge of Medium Parameters[J]. Chin. Phys. Lett., 2020, 37(6): 084302
[3] Shu-Huan Xie, Xinsheng Fang, Peng-Qi Li, Sibo Huang, Yu-Gui Peng, Ya-Xi Shen, Yong Li, Xue-Feng Zhu. Tunable Double-Band Perfect Absorbers via Acoustic Metasurfaces with Nesting Helical Tracks[J]. Chin. Phys. Lett., 2020, 37(5): 084302
[4] Hong-Juan Yang, Jian Li, Xiang Gao, Jun Ma, Jun-Hong Li, Wen Wang, Cheng-Hao Wang. Detection and Location of a Target in Layered Media by Snapshot Time Reversal and Reverse Time Migration Mixed Method[J]. Chin. Phys. Lett., 2019, 36(11): 084302
[5] Jin-Fu Liang, Yu An, Wei-Zhong Chen. Computational Simulation of Sodium Doublet Line Intensities in Multibubble Sonoluminescence[J]. Chin. Phys. Lett., 2019, 36(10): 084302
[6] Di Wu, De-Yao Yin, Zhi-Yuan Xiao, Qing-Fan Shi. Design of an Acoustic Levitator for Three-Dimensional Manipulation of Numerous Particles[J]. Chin. Phys. Lett., 2019, 36(9): 084302
[7] Hang Yang, Xin Zhang, Jian-hua Guo, Fu-gen Wu, Yuan-wei Yao. Influence of Coating Layer on Acoustic Wave Propagation in a Random Complex Medium with Resonant Scatterers[J]. Chin. Phys. Lett., 2019, 36(8): 084302
[8] Yuan-Yuan Zhang, Wei-Zhong Chen, Ling-Ling Zhang, Xun Wang, Zhan Chen. Uniform Acoustic Cavitation of Liquid in a Disk[J]. Chin. Phys. Lett., 2019, 36(3): 084302
[9] Zhi-Miao Lu, Li Cai, Ji-Hong Wen, Xing Chen. Physically Realizable Broadband Acoustic Metamaterials with Anisotropic Density[J]. Chin. Phys. Lett., 2019, 36(2): 084302
[10] Ke-xue Sun, Shu-yi Zhang, Kiyotaka Wasa. High Ferroelectricities and High Curie Temperature of BiInO$_{3}$PbTiO$_{3}$ Thin Films Deposited by RF Magnetron Sputtering Method[J]. Chin. Phys. Lett., 2018, 35(12): 084302
[11] Han Chen, Ming-Xi Deng, Ning Hu, Ming-Liang Li, Guang-Jian Gao, Yan-Xun Xiang. Analysis of Second-Harmonic Generation of Low-Frequency Dilatational Lamb Waves in a Two-Layered Composite Plate[J]. Chin. Phys. Lett., 2018, 35(11): 084302
[12] H. Barati, Z. Basiri, A. Abdolali. Acoustic Multi Emission Lens via Transformation Acoustics[J]. Chin. Phys. Lett., 2018, 35(10): 084302
[13] Xun Wang, Wei-Zhong Chen, Qi Wang, Jin-Fu Liang. A Theoretical Model for the Asymmetric Transmission of Powerful Acoustic Wave in Double-Layer Liquids[J]. Chin. Phys. Lett., 2017, 34(8): 084302
[14] Tai-Yang Zhao, Wei-Zhong Chen, Sheng-De Liang, Xun Wang, Qi Wang. Temperature and Pressure inside Sonoluminescencing Bubbles Based on Asymmetric Overlapping Sodium Doublet[J]. Chin. Phys. Lett., 2017, 34(6): 084302
[15] Ming-Liang Li, Ming-Xi Deng, Guang-Jian Gao, Han Chen, Yan-Xun Xiang. Influence of Change in Inner Layer Thickness of Composite Circular Tube on Second-Harmonic Generation by Primary Circumferential Ultrasonic Guided Wave Propagation[J]. Chin. Phys. Lett., 2017, 34(6): 084302
Viewed
Full text


Abstract