Chin. Phys. Lett.  2018, Vol. 35 Issue (8): 084301    DOI: 10.1088/0256-307X/35/8/084301
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
An Efficient Three-Dimensional Coupled Normal Mode Model and Its Application to Internal Solitary Wave Problems
Ze-Zhong Zhang1,2, Wen-Yu Luo1,2**, Ren-He Zhang1
1State Key Laboratory of Acoustics, Institute of Acoustics, Chinese Academy of Sciences, Beijing 100190
2University of Chinese Academy of Sciences, Beijing 100049
Cite this article:   
Ze-Zhong Zhang, Wen-Yu Luo, Ren-He Zhang 2018 Chin. Phys. Lett. 35 084301
Download: PDF(680KB)   PDF(mobile)(678KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We present an efficient three-dimensional coupled-mode model based on the Fourier synthesis technique. In principle, this model is a one-way model, and hence provides satisfactory accuracy for problems where the forward scattering dominates. At the same time, this model provides an efficiency gain of an order of magnitude or more over two-way coupled-mode models. This model can be applied to three-dimensional range-dependent problems with a slowly varying bathymetry or internal waves. A numerical example of the latter is demonstrated in this work. Comparisons of both accuracy and efficiency between the present model and a benchmark model are also provided.
Received: 29 January 2018      Published: 15 July 2018
PACS:  43.30.Bp (Normal mode propagation of sound in water)  
  43.25.Rq (Solitons, chaos)  
  43.20.Bi (Mathematical theory of wave propagation)  
Fund: Supported by the National Natural Science Foundation of China under Grant No 11774374, and the Natural Science Foundation of Shandong Province of China under Grant No ZR2016AL10.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/35/8/084301       OR      https://cpl.iphy.ac.cn/Y2018/V35/I8/084301
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Ze-Zhong Zhang
Wen-Yu Luo
Ren-He Zhang
[1]Katsnel'son B G et al 2001 Acoust. Phys. 47 424
[2]Katsnel'son B G and Pereselkov S A 2000 Acoust. Phys. 46 684
[3]Oba R and Finette S 2002 J. Acoust. Soc. Am. 111 769
[4]Lynch J F et al 2006 IEEE J. Oceanic Eng. 31 33
[5]Lynch J F et al 2010 IEEE J. Oceanic Eng. 35 12
[6]Ballard M S 2012 J. Acoust. Soc. Am. 131 1969
[7]Wang N et al 2010 Acta Acust. 35 38 (in Chinese)
[8]Ma S Q et al 2009 J. Vib. Shock 28 73
[9]Badiey M et al 2005 J. Acoust. Soc. Am. 117 613
[10]Luo J et al 2008 J. Acoust. Soc. Am. 124 EL66
[11]Lin Y T et al 2009 J. Acoust. Soc. Am. 126 1752
[12]Siegmann W L et al 1985 J. Acoust. Soc. Am. 78 659
[13]Lee D et al 1992 J. Acoust. Soc. Am. 91 3192
[14]Collins M D and Chin-Bing S A 1990 J. Acoust. Soc. Am. 87 1104
[15]Ferla C M et al 1993 C-SNAP: Coupled SACLANTCEN normal mode propagation loss model (La Spezia: SACLANT Undersea Research Centre)
[16]Luo W Y et al 2012 Sci. Chin. Phys. Mech. Astron. 55 572
[17]Luo W Y and Zhang R H 2015 Sci. Chin. Ser. G 58 594301
[18]Evans R B 1983 J. Acoust. Soc. Am. 74 188
[19]Collins M D and Westwood E K 1991 J. Acoust. Soc. Am. 89 1068
[20]Jensen F B, Kuperman W A, Porter M B and Schmidt H 2011 Computational Ocean Acoustics 2nd edn (New York: Springer)
[21]Fawcett J A and Dawson T W 1990 J. Acoust. Soc. Am. 88 1913
[22]Buckingham M J 1989 J. Acoust. Soc. Am. 86 2273
[23]Luo W Y, Yu X L, Yang X F, Zhang Z Z and Zhang R H 2016 Chin. Phys. B 25 124309
Related articles from Frontiers Journals
[1] Fei-Long Zhu, Eric I. Thorsos, Feng-Hua Li. Coupled Perturbed Modes over Sloping Penetrable Bottom[J]. Chin. Phys. Lett., 2017, 34(7): 084301
[2] LI Jun, LI Zheng-Lin, REN Yun, LI Wen, ZHANG Ren-He. Horizontal-Longitudinal Correlations of Acoustic Field in Deep Water[J]. Chin. Phys. Lett., 2015, 32(06): 084301
[3] LUO Wen-Yu, ZHANG Ren-He. A Benchmark Model for Three-Dimensional Sound Propagation in an Ideal Wedge-Shaped Waveguide[J]. Chin. Phys. Lett., 2015, 32(02): 084301
[4] QIN Ji-Xing, LUO Wen-Yu, ZHANG Ren-He, YANG Chun-Mei. Three-Dimensional Sound Propagation and Scattering in Two-Dimensional Waveguides[J]. Chin. Phys. Lett., 2013, 30(11): 084301
[5] NIU Hai-Qiang, ZHANG Ren-He, LI Zheng-Lin, GUO Yong-Gang, HE Li. Bubble Pulse Cancelation in the Time-Frequency Domain Using Warping Operators[J]. Chin. Phys. Lett., 2013, 30(8): 084301
[6] QIN Ji-Xing, LUO Wen-Yu, ZHANG Ren-He, YANG Chun-Mei. Numerical Solution of Range-Dependent Acoustic Propagation[J]. Chin. Phys. Lett., 2013, 30(7): 084301
[7] LUO Wen-Yu, YANG Chun-Mei, QIN Ji-Xing, ZHANG Ren-He. Sound Propagation in a Wedge with a Rigid Bottom[J]. Chin. Phys. Lett., 2012, 29(10): 084301
[8] LUO Wen-Yu**, YANG Chun-Mei, ZHANG Ren-He. Generalized Coupled-Mode Formulation for Sound Propagation in Range-Dependent Waveguides[J]. Chin. Phys. Lett., 2012, 29(1): 084301
[9] WANG Hao-Zhong, WANG Ning, GAO Da-Zhi . Data-Derived Estimation of Source Depth Using Vertical Line Array Data in Shallow Water[J]. Chin. Phys. Lett., 2011, 28(11): 084301
[10] LI Qian-Qian, **, LI Zheng-Lin, ZHANG Ren-He . Applications of Waveguide Invariant Theory to the Analysis of Interference Phenomena in Deep Water[J]. Chin. Phys. Lett., 2011, 28(3): 084301
[11] LUO Wen-Yu**, SCHMIDT Henrik. Three-Dimensional Mode Coupling around a Conical Seamount and the Use of Random Discretization[J]. Chin. Phys. Lett., 2010, 27(11): 084301
[12] LUO Wen-Yu, SCHMIDT Henrik. A Spectral Coupled-Mode Formulation for Sound Propagation around Axisymmetric Seamounts[J]. Chin. Phys. Lett., 2010, 27(9): 084301
[13] ZHANG Yan-Jun, ZHANG Ren-He, LI Feng-Hua. Frequency Dependence of Transverse Correlation Coefficient in the Yellow Sea[J]. Chin. Phys. Lett., 2010, 27(8): 084301
[14] ZHAO Zhen-Dong, WANG Ning, GAO Da-Zhi, WANG Hao-Zhong. Broadband Source Ranging in Shallow Water Using the Ω-Interference Spectrum[J]. Chin. Phys. Lett., 2010, 27(6): 084301
[15] LI Feng-Hua, ZHANG Ren-He. Frequency Dependence of Longitudinal Correlation Length inthe Yellow Sea[J]. Chin. Phys. Lett., 2008, 25(7): 084301
Viewed
Full text


Abstract