Chin. Phys. Lett.  2018, Vol. 35 Issue (4): 044205    DOI: 10.1088/0256-307X/35/4/044205
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Superradiance-Driven Phonon Laser
Ya-Jing Jiang1†, Hao Lü2,4†, Hui Jing3**
1Department of Physics, Henan Normal University, Xinxiang 453007
2Key Laboratory for Quantum Optics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800
3Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Department of Physics and Synergetic Innovation Center for Quantum Effects and Applications, Hunan Normal University, Changsha 410081
4University of Chinese Academy of Sciences, Beijing 100049
Cite this article:   
Ya-Jing Jiang, Hao Lü, Hui Jing 2018 Chin. Phys. Lett. 35 044205
Download: PDF(529KB)   PDF(mobile)(519KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We propose to enhance the generation of a phonon laser by exploiting optical superradiance. In our scheme, the optomechanical cavity contains a movable membrane, which supports a mechanical mode, and the superradiance cavity can generate the coherent collective light emissions by applying a transverse pump to an ultracold intracavity atomic gas. The superradiant emission turns out to be capable of enhancing the phonon laser performance. This indicates a new way to operate a phonon laser with the assistance of coherent atomic gases trapped in a cavity or lattice potentials.
Received: 16 November 2017      Published: 13 March 2018
PACS:  42.50.-p (Quantum optics)  
  37.90.+j (Other topics in mechanical control of atoms, molecules, and ions)  
  71.36.+c (Polaritons (including photon-phonon and photon-magnon interactions))  
Fund: Supported the National Natural Science Foundation of China under Grant Nos 11474087 and 11774086, and the Hunan Normal University Talented Youth Foundation.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/35/4/044205       OR      https://cpl.iphy.ac.cn/Y2018/V35/I4/044205
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Ya-Jing Jiang
Hao Lü
Hui Jing
[1]Aspelmeyer M, Kippenberg T J and Marquardt F 2014 Rev. Mod. Phys. 86 1391
[2]Metcalfe M 2014 Appl. Phys. Rev. 1 031105
[3]Bagci T, Simonsen A, Schmid S, Villanueva L G, Zeuthen E, Appel J, Taylor J M, Sørensen A, Usami K, Schliesser A and Polzik E S 2014 Nature 507 81
[4]Xiong H, Liu Z X and Wu Y 2017 Opt. Lett. 42 3630
[5]Lü X Y, Wu Y, Johansson J R, Jing H, Zhang J and Nori F 2015 Phys. Rev. Lett. 114 093602
[6]Jing H, Özdemir Ş K, Geng Z, Zhang J, Lü X Y, Peng B, Yang L and Nori F 2015 Sci. Rep. 5 9663
[7]Jing H, Özdemir Ş K, Lü H and Nori F 2017 Sci. Rep. 7 3386
[8]Lü H, Jiang Y, Wang Y Z and Jing H 2017 Photon. Res. 5 367
[9]Vahala K, Herrmann M, Knünz S, Batteiger V, Saathoff G, Hänsch T W and Udem Th 2009 Nat. Phys. 5 682
[10]Mahboob I, Nishiguchi K, Fujiwara A and Yamaguchi H 2013 Phys. Rev. Lett. 110 127202
[11]Beardsley R P, Akimov A V, Henini M and Kent A J 2010 Phys. Rev. Lett. 104 085501
[12]Grudinin I S, Lee H, Painter O and Vahala K J 2010 Phys. Rev. Lett. 104 083901
[13]Kemiktarak U, Dur, M, Metcalfe M and Lawall J 2014 Phys. Rev. Lett. 113 030802
[14]Cohen J D, Meenehan S M, MacCabe G S, Gröblacher S, Safavi-Naeini A H, Marsili F, Shaw M D and Painter O 2015 Nature 520 522
[15]Jing H, Özdemir S K, Lü X Y, Zhang J, Yang L and Nori F 2014 Phys. Rev. Lett. 113 053604
[16]Zhang J, Peng B, Özdemir Ş K, Liu Y X, Jing H, Lü X Y, Liu Y L, Yang L and Nori F 2015 Phys. Rev. B 92 115407
[17]Lü H, Özdemir S K, Kuang L M, Nori F and Jing H 2017 Phys. Rev. Appl. 8 044020
[18]Li N, Ren J, Wang L, Zhang G, Hänggi P and Li B 2012 Rev. Mod. Phys. 84 1045
[19]Dicke R H 1954 Phys. Rev. 93 99
[20]Chen Y K, Zhou X J, Yang F and Chen X Z 2008 Chin. Phys. Lett. 25 42
[21]Baumann K, Guerlin C, Brennecke F and Esslinger T 2010 Nature 464 1301
[22]Klinder J, Keßler H, Bakhtiari M R, Thorwart M and Hemmerich A 2015 Phys. Rev. Lett. 115 230403
[23]Roof S J, Kemp K J, Havey M D and Sokolov I M 2016 Phys. Rev. Lett. 117 073003
[24]Baumann K, Mottl R, Brennecke F and Esslinger T 2011 Phys. Rev. Lett. 107 140402
[25]Mottl R, Brennecke F, Baumann K, Landig R, Donner T and Esslinger T 2012 Science 336 1570
[26]Zhang X F, Sun Q, Wen Y C, Liu W M, Eggert S and Ji A C 2013 Phys. Rev. Lett. 110 090402
[27]Keeling J, Bhaseen M J and Simons B D 2014 Phys. Rev. Lett. 112 143002
[28]Chen Y, Yu Z and Zhai H 2014 Phys. Rev. Lett. 112 143004
[29]Piazza F and Strack P 2014 Phys. Rev. Lett. 112 143003
[30]Zheng W and Cooper N R 2016 Phys. Rev. Lett. 117 175302
[31]Santos J P, Semi ao F L and Furuya K 2010 Phys. Rev. A 82 063801
[32]Wang Y, Liu B, Lian J and Liang J 2012 Opt. Express 20 10106
[33]Nagy D, Kónya G, Szirmai G and Domokos P 2010 Phys. Rev. Lett. 104 130401
[34]Dimer F, Estienne B, Parkins A S and Carmichael H J 2007 Phys. Rev. A 75 013804
[35]Wang H, Wang Z, Zhang J, Özdemir Ş K, Yang L and Liu Y X 2014 Phys. Rev. A 90 053814
[36]Wilson D J, Regal C A, Papp S B and Kimble H J 2009 Phys. Rev. Lett. 103 207204
[37]Ceban V, Longo P and Macovei M A 2017 Phys. Rev. A 95 023806
Related articles from Frontiers Journals
[1] Ya-Jing Jiang, Xing-Dong Zhao, Shi-Qiang Xia, Chun-Jie Yang, Wu-Ming Liu, and Zun-Lue Zhu. Nonlinear Optomechanically Induced Transparency in a Spinning Kerr Resonator[J]. Chin. Phys. Lett., 2022, 39(12): 044205
[2] M.-L. Cai, Z.-D. Liu, Y. Jiang, Y.-K. Wu, Q.-X. Mei, W.-D. Zhao, L. He, X. Zhang, Z.-C. Zhou, and L.-M. Duan. Probing a Dissipative Phase Transition with a Trapped Ion through Reservoir Engineering[J]. Chin. Phys. Lett., 2022, 39(2): 044205
[3] Shaoxing Liu, Xuanying Lai, Ce Yang, and J. F. Chen. Towards High-Dimensional Entanglement in Path: Photon-Source Produced from a Two-Dimensional Atomic Cloud[J]. Chin. Phys. Lett., 2021, 38(8): 044205
[4] Rui Zhang, Yuan-Chuan Biao, Wen-Long You, Xiao-Guang Wang, Yu-Yu Zhang, and Zi-Xiang Hu. Generalized Rashba Coupling Approximation to a Resonant Spin Hall Effect of the Spin–Orbit Coupling System in a Magnetic Field[J]. Chin. Phys. Lett., 2021, 38(7): 044205
[5] Zhiqiang Ren , Rong Wen , and J. F. Chen. Photon Coalescence in a Lossy Non-Hermitian Beam Splitter[J]. Chin. Phys. Lett., 2020, 37(8): 044205
[6] Chen-Rui Zhang, Meng-Jun Hu, Guo-Yong Xiang, Yong-Sheng Zhang, Chuan-Feng Li, and Guang-Can Guo. Direct Strong Measurement of a High-Dimensional Quantum State[J]. Chin. Phys. Lett., 2020, 37(8): 044205
[7] Liwei Duan, Yan-Zhi Wang, and Qing-Hu Chen. $\mathcal{PT}$ Symmetry of a Square-Wave Modulated Two-Level System[J]. Chin. Phys. Lett., 2020, 37(8): 044205
[8] Wen-Ya Song, Fu-Lin Zhang. Dynamical Algebras in the 1+1 Dirac Oscillator and the Jaynes–Cummings Model[J]. Chin. Phys. Lett., 2020, 37(5): 044205
[9] Lingjie Yu, Heqing Wang, Hao Li, Zhen Wang, Yidong Huang, Lixing You, Wei Zhang. A Silicon Shallow-Ridge Waveguide Integrated Superconducting Nanowire Single Photon Detector Towards Quantum Photonic Circuits[J]. Chin. Phys. Lett., 2019, 36(8): 044205
[10] Jian-Feng Li, Yun-Fei Wang, Ke-Yu Su, Kai-Yu Liao, Shan-Chao Zhang, Hui Yan, Shi-Liang Zhu. Generation of Gaussian-Shape Single Photons for High Efficiency Quantum Storage[J]. Chin. Phys. Lett., 2019, 36(7): 044205
[11] Ji-Bing Yuan, Zhao-Hui Peng, Shi-Qing Tang, Deng-Yu Zhang. Superposed Transparency Effect and Entanglement Generation with Hybrid System of Photonic Molecule and Dipole Emitter[J]. Chin. Phys. Lett., 2019, 36(3): 044205
[12] Xing Wei, ZhenDa Xie, Yan-Xiao Gong, Xinjie Lv, Gang Zhao, ShiNing Zhu. Localization and Steering of Light in One-Dimensional Parity-Time Symmetric Photonic Lattices[J]. Chin. Phys. Lett., 2019, 36(1): 044205
[13] J. Shiri, F. Shahi, M. R. Mehmannavaz, L. Shahrassai. Phase Control of Transient Optical Properties of Double Coupled Quantum-Dot Nanostructure via Gaussian Laser Beams[J]. Chin. Phys. Lett., 2018, 35(2): 044205
[14] A. Asghari Nejad, H. R. Askari, H. R. Baghshahi. Bistability in a Hybrid Optomechanical System under the Effect of a Nonlinear Medium[J]. Chin. Phys. Lett., 2017, 34(8): 044205
[15] Li Wang, Yi-Hong Qi, Li Deng , Yue-Ping Niu, Shang-Qing Gong, Hong-Ju Guo. Effect of Phase Modulation on Electromagnetically Induced Grating in a Five-Level M-Type Atomic System[J]. Chin. Phys. Lett., 2017, 34(7): 044205
Viewed
Full text


Abstract