Chin. Phys. Lett.  2018, Vol. 35 Issue (11): 117802    DOI: 10.1088/0256-307X/35/11/117802
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Thermal Characteristics of PVA-PANI-ZnS Nanocomposite Film Synthesized by Gamma Irradiation Method
Afarin Bahrami1**, Kasra Behzad2, Nastaran Faraji3, Alireza Kharazmi4**
1Department of Physics, Islamshahr Branch, Islamic Azad University, Islamshahr, Iran
2Department of Physics, Shahr-e-Qods Branch, Islamic Azad University, Tehran, Iran
3School of Materials Science and Engineering, UNSW Australia, Sydney, NSW, Australia
4School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
Cite this article:   
Afarin Bahrami, Kasra Behzad, Nastaran Faraji et al  2018 Chin. Phys. Lett. 35 117802
Download: PDF(514KB)   PDF(mobile)(508KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Gamma irradiation is employed for in situ preparation of PVA-PANI-ZnS nanocomposite. The irradiation dose is varied from 10 to 40 kGy at 10 kGy intervals. The XRD result confirms the formation of crystalline phases corresponding to ZnS nanoparticles, PVA and PANI. Field emission scanning electron microscopy shows the formation of agglomerated PANI along the PVA backbone, within which the ZnS nanoparticles are dispersed. UV-visible spectroscopy is conducted to measure the transmittance spectra of samples revealing the electronic absorption characteristics of ZnS and PANI nanoparticles. Photo-acoustic (PA) setup is installed to investigate the thermal properties of samples. The PA spectroscopy indicates a high value of thermal diffusivity for samples due to the presence of ZnS and PANI nanoparticles. Moreover, at higher doses, the more polymerization and formation of PANI and ZnS nanoparticles result in enhancement of thermal diffusivity.
Received: 23 June 2018      Published: 23 October 2018
PACS:  78.67.Sc (Nanoaggregates; nanocomposites)  
  82.35.-x (Polymers: properties; reactions; polymerization)  
  66.30.Xj (Thermal diffusivity)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/35/11/117802       OR      https://cpl.iphy.ac.cn/Y2018/V35/I11/117802
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Afarin Bahrami
Kasra Behzad
Nastaran Faraji
Alireza Kharazmi
[1]Amrollahi B H and Borhani Z M 2012 Indian J. Phys. 86 439
[2]Yunus W M M, Ali F M, Talib Z A, Tou T Y, Shukor R A, Muniandy S, You A H and Lim W L 2010 AIP Conf. Proc. (Malaysia 27–30 October 2010) p 47
[3]Liu J and Yang R 2010 Phys. Rev. B 81 174122
[4]Mohamed R M, Mkhalid I A, Baeissa E S and Al-Rayyani M 2012 J. Nanotechnol. 2012 329082
[5]Faraji N, Yunus W M M, Kharazmi A and Saion E 2014 Optik (Munich Ger.) 125 2809
[6]Kojima A, Teshima K, Shirai Y and Miyasaka T 2009 J. Am. Chem. Soc. 131 6050
[7]Faraji N, Mahmood Mat Yunus W, Kharazmi A, Saion E and Behzad K 2014 Int. J. Thermophys. 35 53
[8]Kim H, Abdala A A and Macosko C W 2010 Macromolecules 43 6515
[9]Kazeminezhad I and Sadollahkhani A 2016 J. Mater. Sci.: Mater. Electron. 27 4206
[10]Bahrami A, Talib Z A, Yunus W M M, Behzad K, M Abdi M and Din F U 2012 Int. J. Mol. Sci. 13 14917
[11]Gupta S and Price C 2016 Compos. Part B 105 46
[12]Yi Z, Bettini L G, Tomasello G, Kumar P, Piseri P, Valitova I, Milani P, Soavi F and Cicoira F 2017 J. Polym. Sci. Polym. Phys. 55 96
[13]ALOthman Z A, Alam M M, Naushad M and Bushra R 2015 Int. J. Electrochem. Sci. 10 2663
[14]Salimi J and Salimi F 2016 Rev. Mex. Ing. Quim. 15 185
[15]Behzad K, Yunus W M M, Bahrami A, Kharazmi A and Soltani N 2016 Appl. Opt. 55 2143
[16]Bahrami A, Behzad K, Faraji N and Kharazmi A 2018 Mater. Sci. Poland 36 102
[17]Kharazmi A, Faraji N, Hussin R M, Saion E, Yunus W M M and Behzad K 2015 Beilstein J. Nanotechnol. 6 529
[18]Lux F, Hinrichsen G, Krinichnyi V I, Nazarova I B, Cheremisow S D and Pohl M M 1993 Synth. Met. 55 347
[19]Huang Z, Liu E, Shen H, Xiang X, Tian Y, Xiao C and Mao Z 2011 Mater. Lett. 65 2015
[20]Gao H, Jiang T, Han B, Wang Y, Du J, Liu Z and Zhang J 2004 Polymer 45 3017
[21]Lu H Y, Chu S Y and Tan S S 2004 J. Cryst. Growth 269 385
[22]Dutta P, Biswas S, Ghosh M, De S K and Chatterjee S 2001 Synth. Met. 122 455
[23]Dutta K, Manna S and De S K 2009 Synth. Met. 159 315
[24]Estrada-Monje A, Andreu-Dıaz J and Cruz-Salgado J 2016 Rev. Mex. Ing. Quim. 15 953
Related articles from Frontiers Journals
[1] Yi-Tao Yang, Chong-Hong Zhang, Chang-Hao Su, Zhao-Nan Ding, Yin Song, Yu-Guang Chen. Aligned Elongation of Ag Nanoparticles Embedded in Silica Irradiated with High Energy Ni Ions[J]. Chin. Phys. Lett., 2018, 35(9): 117802
[2] A. Zolanvar, H. Sadeghi, A. Ranjgar. Effective Dielectric Properties of Au-ZnS and Au-ZnO Plasmonics Nanocomposites in the Terahertz Regime[J]. Chin. Phys. Lett., 2014, 31(10): 117802
[3] HU Chuan-Sheng, LUO Zhen-Lin, SUN Xia, PAN Guo-Qiang, HE Qing, WEN Wen, ZHOU Xing-Tai, Ichiro Takeuchi, GAO Chen. Strain Induced Metastable Phase and Phase Revolution in PbTiO3-CoFe2O4 Nanocomposite Film[J]. Chin. Phys. Lett., 2014, 31(1): 117802
[4] A. Zolanvari, H. Sadeghi, R. Norouzi, A. Ranjgar. Surface Plasmons and Optical Properties of TiO2/X(X = Au and Ag) Nanostructure Thin Films[J]. Chin. Phys. Lett., 2013, 30(9): 117802
[5] Alireza Kharazmi, Elias Saion, Nastaran Faraji, Nayereh Soltani, Arash Dehzangi . Optical Properties of CdS/PVA Nanocomposite Films Synthesized using the Gamma-Irradiation-Induced Method[J]. Chin. Phys. Lett., 2013, 30(5): 117802
[6] WEI Ang, XIONG Li, SUN Li, LIU Yan-Jun, LI Wei-Wei. CuO Nanoparticle Modified ZnO Nanorods with Improved Photocatalytic Activity[J]. Chin. Phys. Lett., 2013, 30(4): 117802
[7] H. Sadeghi, H. Khalili, M. Goodarzi. Plasmonic Nanostructured Electromagnetic Materials[J]. Chin. Phys. Lett., 2012, 29(9): 117802
[8] Majid. Farahmandjou. Synthesis of ITO Nanoparticles Prepared by the Degradation of Sulfide Method[J]. Chin. Phys. Lett., 2012, 29(7): 117802
Viewed
Full text


Abstract