Chin. Phys. Lett.  2018, Vol. 35 Issue (11): 117501    DOI: 10.1088/0256-307X/35/11/117501
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Rare-Earth Chalcogenides: A Large Family of Triangular Lattice Spin Liquid Candidates
Weiwei Liu1,2†, Zheng Zhang1,2†, Jianting Ji1†, Yixuan Liu2, Jianshu Li1,2, Xiaoqun Wang3, Hechang Lei2**, Gang Chen4**, Qingming Zhang1,5**
1National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190
2Department of Physics and Beijing Key Laboratory of Opto-electronic Functional Materials & Micro-nano Devices, Renmin University of China, Beijing 100872
3Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240
4State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433
5School of Physical Science and Technology, Lanzhou University, Lanzhou 730000
Cite this article:   
Weiwei Liu, Zheng Zhang, Jianting Ji et al  2018 Chin. Phys. Lett. 35 117501
Download: PDF(11907KB)   PDF(mobile)(12046KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Frustrated quantum magnets are expected to host many exotic quantum spin states like quantum spin liquid (QSL), and have attracted numerous interest in modern condensed matter physics. The discovery of the triangular lattice spin liquid candidate YbMgGaO$_4$ stimulated an increasing attention on the rare-earth-based frustrated magnets with strong spin-orbit coupling. Here we report the synthesis and characterization of a large family of rare-earth chalcogenides AReCh$_2$ (A = alkali or monovalent ions, Re = rare earth, Ch = O, S, Se). The family compounds share the same structure ($R\bar{3}m$) as YbMgGaO$_4$, and antiferromagnetically coupled rare-earth ions form perfect triangular layers that are well separated along the $c$-axis. Specific heat and magnetic susceptibility measurements on NaYbO$_2$, NaYbS$_2$ and NaYbSe$_2$ single crystals and polycrystals, reveal no structural or magnetic transition down to 50 mK. The family, having the simplest structure and chemical formula among the known QSL candidates, removes the issue on possible exchange disorders in YbMgGaO$_4$. More excitingly, the rich diversity of the family members allows tunable charge gaps, variable exchange coupling, and many other advantages. This makes the family an ideal platform for fundamental research of QSLs and its promising applications.
Received: 24 September 2018      Published: 30 September 2018
PACS:  75.10.Kt (Quantum spin liquids, valence bond phases and related phenomena)  
  75.30.Et (Exchange and superexchange interactions)  
  75.30.Gw (Magnetic anisotropy)  
Fund: Supported by the Ministry of Science and Technology of China under Grant Nos 2016YFA0300504, 2017YFA0302904 and 2016YFA0301001, and the Natural Science Foundation of China under Grant Nos 11774419, 11474357, 11822412, 11774423 and 11574394.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/35/11/117501       OR      https://cpl.iphy.ac.cn/Y2018/V35/I11/117501
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Weiwei Liu
Zheng Zhang
Jianting Ji
Yixuan Liu
Jianshu Li
Xiaoqun Wang
Hechang Lei
Gang Chen
Qingming Zhang
[1]Anderson P W 1973 Mater. Res. Bull. 8 153
[2]Lee P A, Nagaosa N and Wen X G 2006 Rev. Mod. Phys. 78 17
[3]Kitaev A 2006 Ann. Phys. 321 2
[4]Wen X G 2007 Quantum Field Theory of Many-Body Systems (Oxford University Press)
[5]Essin A M and Hermele M 2013 Phys. Rev. B 87 104406
[6]Balents L 2010 Nature 464 199
[7]Helton J S, Matan K, Shores M P, Nytko E A, Bartlett B M, Yoshida Y, Takano Y, Suslov A, Qiu Y, Chung J H , Nocera D G and Lee Y S 2007 Phys. Rev. Lett. 98 107204
[8]Han T H, Helton J S, Chu S Y, Nocera D G, Rodriguez R, Jose A, Broholm C and Lee Y S 2012 Nature 492 406
[9]Olariu A, Mendels P, Bert F, Duc F, Trombe J C, de Vries M A and Harrison A 2008 Phys. Rev. Lett. 100 087202
[10]Yoshihiko O, Hiroyuki Y and Zenji H 2009 J. Phys. Soc. Jpn. 78 033701
[11]Zenji H, Masafumi H, Naoya K, Minoru N, Hidenori T, Yoshitomo K and Masashi T 2001 J. Phys. Soc. Jpn. 70 3377
[12]Yoshida M, Takigawa M, Yoshida H, Okamoto Y and Hiroi Z 2009 Phys. Rev. Lett. 103 077207
[13]Li Y S Pan B Y, Li S Y, Tong W, Ling L S, Yang Z R, Wang J F, Chen Z J, Wu Z H and Zhang Q M 2014 New J. Phys. 16 093011
[14]Zorko A, Nellutla S, van Tol J, Brunel L C, Bert F, Duc F, Trombe J C, de Vries M A, Harrison A and Mendels P 2008 Phys. Rev. Lett. 101 026405
[15]Itou T, Oyamada A, Maegawa S, Tamura M and Kato R 2007 J. Phys.: Condens. Matter 19 145247
[16]Itou T, Oyamada A, Maegawa S, Tamura M and Kato R 2008 Phys. Rev. B 77 104413
[17]Shimizu Y, Miyagawa K, Kanoda K, Maesato M and Saito G 2003 Phys. Rev. Lett. 91 107001
[18]Satoshi Y, Yasuhiro N, Masaharu O, Yugo O, Hiroyuki N, Yasuhiro S, Kazuya M and Kazushi K 2008 Nat. Phys. 4 459
[19]Kurosaki Y, Shimizu Y, Miyagawa K, Kanoda K and Saito G 2005 Phys. Rev. Lett. 95 177001
[20]Gardner J S, Gingras M J P and Greedan J E 2010 Rev. Mod. Phys. 82 53
[21]Gardner J S, Dunsiger S R, Gaulin B D, Gingras M J P, Greedan J E, Kiefl R F, Lumsden M D, MacFarlane W A, Raju N P, Sonier J E, Swainson I and Tun Z 1999 Phys. Rev. Lett. 82 1012
[22]Ross K A, Ruff J P C, Adams C P, Gardner J S, Dabkowska H A, Qiu Y, Copley J R D and Gaulin B D 2009 Phys. Rev. Lett. 103 227202
[23]Princep A J, Prabhakaran D, Boothroyd A T and Adroja D T 2013 Phys. Rev. B 88 104421
[24]Ross K A, Savary L, Gaulin B D and Balents L 2011 Phys. Rev. X 1 021002
[25]Molavian H R, Gingras M J P and Canals B 2007 Phys. Rev. Lett. 98 157204
[26]Onoda S and Tanaka Y 2010 Phys. Rev. Lett. 105 047201
[27]Applegate R, Hayre N R, Singh R R P, Lin T, Day A G R, Gingras and M J P 2012 Phys. Rev. Lett. 109 097205
[28]Chang L J, Onoda S, Su Y X, Kao Y J, Tsuei K D, Yasui Y, Kakurai K and Martin R L 2012 Nat. Commun. 3 992
[29]Huang Y P, Chen G and Hermele M 2014 Phys. Rev. Lett. 112 167203
[30]Lee S B, Onoda S and Balents L 2012 Phys. Rev. B 86 104412
[31]Dun Z L, Trinh J, Li K, Lee M, Chen K W, Baumbach R, Hu Y F, Wang Y X, Choi E S, Shastry B S, Ramirez A P and Zhou H D 2016 Phys. Rev. Lett. 116 157201
[32]Ding Z F, Yang Y X, Zhang J, Tan C, Zhu Z, Chen G and Shu L 2018 arXiv:1802.00968
[33]Li Y S, Liao H J, Zhang Z, Li, S Y, Jin F, Ling L S, Zhang L, Zou Y M, Pi L, Yang Z R, Wang J F, Wu Z H and Zhang Q M 2015 Sci. Rep. 5 16419
[34]Li Y S, Chen G, Tong W, Pi L, Liu J J, Yang Z R, Wang X Q and Zhang Q M 2015 Phys. Rev. Lett. 115 167203
[35]Li Y S, Adroja D, Biswas P K, Baker P J, Zhang Q, Liu J J, Tsirlin A A, Gegenwart P and Zhang Q M 2016 Phys. Rev. Lett. 117 097201
[36]Shen Y, LiY D, Wo H L, Li Y S, Shen S D, Pan B Y, Wang Q S, Walker H C, Steffens P, Boehm M, Hao Y Q, Quintero-Castro D L, Harriger L W, Frontzek M D, Hao L J, Meng S Q, Zhang Q M, Chen G and Zhao J 2016 Nature 540 559
[37]Paddison J A M, Daum M, Dun Z L, Ehlers G, Liu Y H, Stone M B, Zhou H D and Mourigal M 2017 Nat. Phys. 13 117
[38]Xu Y, Zhang J, Li Y S, Yu Y J, Hong X C, Zhang Q M and Li S Y 2016 Phys. Rev. Lett. 117 267202
[39]Zhang X S, Mahmood F, Daum M, Dun Z L, Paddison J A M, Laurita N J, Hong T, Zhou H D, Armitage N P and Mourigal M 2018 Phys. Rev. X 8 031001
[40]Li Y S, Adroja D, Bewley R I, Voneshen D, Tsirlin A A, Gegenwart P and Zhang Q M 2017 Phys. Rev. Lett. 118 107202
[41]Li Y S, Bachus S, TokiwaY, Tsirlin A A and Gegenwart P 2018 arXiv:1804.00696
[42]Li Y S, Adroja D, Voneshen D, Bewley R I, Zhang Q M, Tsirlin A A and Gegenwart P 2017 Nat. Commun. 8 15814
[43]Ma Z, Wang J H, Dong Z Y, ZhangJ, Li S C, Zheng S H, Yu Y J, Wang W, Che L Q, Ran K J, Bao S, Cai Z W, Permk P, Schneidewind A, Yano S, Gardner J S, Lu X, Yu S L, Liu J M, Li S Y, Li J X and Wen J S 2018 Phys. Rev. Lett. 120 087201
[44]Shen Y, Li, Y D, Walker H C, Steffens P, Boehm M, Zhang X W, Shen S D, Wo H L, Chen G and J 2017 arXiv:1708.06655
[45]Li Y D, Wang X Q and Chen G 2016 Phys. Rev. B 94 035107
[46]Li Y D, Wang X Q and Chen G 2016 Phys. Rev. B 94 201114
[47]Liu C L, Li Y D and Chen G 2018 Phys. Rev. B 98 045119
[48]Curnoe S H 2008 Phys. Rev. B 78 094418
[49]Onoda S and Tanaka Y 2011 Phys. Rev. B 83 094411
[50]Li Y D, Lu Y M and Chen G 2017 Phys. Rev. B 96 054445
[51]Parker E and Balents L 2018 Phys. Rev. B 97 184413
[52]Li Y D, Shen Y, Li Y S, Zhao J and Chen G 2018 Phys. Rev. B 97 125105
[53]Li Y D and Chen G 2017 Phys. Rev. B 96 075105
[54]Zhu Z Y, Maksimov P A, White S R and Chernyshev A L 2017 Phys. Rev. Lett. 119 157201
[55]Zhu Z Y, Maksimov P A, White S R and Chernyshev A L 2018 Phys. Rev. Lett. 120 207203
[56]Kimchi I, Nahum A and Senthil T 2018 Phys. Rev. X 8 031028
[57]Senthil T 2008 Phys. Rev. B 78 045109
[58]Baenitz M, Schlender P, Sichelschmidt J, Onykiienko Y A, Zangeneh Z Ranjith K M, Sarkar R, Hozoi L, Walker H C, Orain J C , Yasuoka H, van den Brink J, Klauss H H, Inosov D S and Doert T 2018 arXiv:1809.01947
Related articles from Frontiers Journals
[1] Yanxing Yang, Kaiwen Chen, Zhaofeng Ding, Adrian D. Hillier, and Lei Shu. Muon Spin Relaxation Study of Frustrated Tm$_3$Sb$_3$Mg$_2$O$_{14}$ with Kagomé Lattice[J]. Chin. Phys. Lett., 2022, 39(10): 117501
[2] Ling Wang, Yalei Zhang, and Anders W. Sandvik. Quantum Spin Liquid Phase in the Shastry–Sutherland Model Detected by an Improved Level Spectroscopic Method[J]. Chin. Phys. Lett., 2022, 39(7): 117501
[3] Xiaoxue Zhao, Kejing Ran, Jinghui Wang, Song Bao, Yanyan Shangguan, Zhentao Huang, Junbo Liao, Bo Zhang, Shufan Cheng, Hao Xu, Wei Wang, Zhao-Yang Dong, Siqin Meng, Zhilun Lu, Shin-ichiro Yano, Shun-Li Yu, Jian-Xin Li, and Jinsheng Wen. Neutron Spectroscopy Evidence for a Possible Magnetic-Field-Induced Gapless Quantum-Spin-Liquid Phase in a Kitaev Material $\alpha$-RuCl$_3$[J]. Chin. Phys. Lett., 2022, 39(5): 117501
[4] Kejing Ran, Jinghui Wang, Song Bao, Zhengwei Cai, Yanyan Shangguan, Zhen Ma, Wei Wang, Zhao-Yang Dong, P. Čermák, A. Schneidewind, Siqin Meng, Zhilun Lu, Shun-Li Yu, Jian-Xin Li, and Jinsheng Wen. Evidence for Magnetic Fractional Excitations in a Kitaev Quantum-Spin-Liquid Candidate $\alpha$-RuCl$_3$[J]. Chin. Phys. Lett., 2022, 39(2): 117501
[5] Yuan Wei, Xiaoyan Ma, Zili Feng, Yongchao Zhang, Lu Zhang, Huaixin Yang, Yang Qi, Zi Yang Meng, Yan-Cheng Wang, Youguo Shi, and Shiliang Li. Nonlocal Effects of Low-Energy Excitations in Quantum-Spin-Liquid Candidate Cu$_3$Zn(OH)$_6$FBr[J]. Chin. Phys. Lett., 2021, 38(9): 117501
[6] Jianting Ji, Mengjie Sun, Yanzhen Cai, Yimeng Wang, Yingqi Sun, Wei Ren, Zheng Zhang, Feng Jin, and Qingming Zhang. Rare-Earth Chalcohalides: A Family of van der Waals Layered Kitaev Spin Liquid Candidates[J]. Chin. Phys. Lett., 2021, 38(4): 117501
[7] J.-J. Wen, Y. S. Lee. The Search for the Quantum Spin Liquid in Kagome Antiferromagnets[J]. Chin. Phys. Lett., 2019, 36(5): 117501
[8] Zili Feng, Wei Yi, Kejia Zhu, Yuan Wei, Shanshan Miao, Jie Ma, Jianlin Luo, Shiliang Li, Zi Yang Meng, Youguo Shi. From Claringbullite to a New Spin Liquid Candidate Cu$_3$Zn(OH)$_6$FCl[J]. Chin. Phys. Lett., 2019, 36(1): 117501
[9] Zili Feng, Zheng Li, Xin Meng, Wei Yi, Yuan Wei, Jun Zhang, Yan-Cheng Wang, Wei Jiang, Zheng Liu, Shiyan Li, Feng Liu, Jianlin Luo, Shiliang Li, Guo-qing Zheng, Zi Yang Meng, Jia-Wei Mei, Youguo Shi. Gapped Spin-1/2 Spinon Excitations in a New Kagome Quantum Spin Liquid Compound Cu$_3$Zn(OH)$_6$FBr [J]. Chin. Phys. Lett., 2017, 34(7): 117501
Viewed
Full text


Abstract