CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Ge Complementary Tunneling Field-Effect Transistors Featuring Dopant Segregated NiGe Source/Drain |
Junkang Li, Yiming Qu, Siyu Zeng, Ran Cheng, Rui Zhang**, Yi Zhao |
College of Information Science & Electronic Engineering, Zhejiang University, Hangzhou 310027
|
|
Cite this article: |
Junkang Li, Yiming Qu, Siyu Zeng et al 2018 Chin. Phys. Lett. 35 117201 |
|
|
Abstract Ge complementary tunneling field-effect transistors (TFETs) are fabricated with the NiGe metal source/drain (S/D) structure. The dopant segregation method is employed to form the NiGe/Ge tunneling junctions of sufficiently high Schottky barrier heights. As a result, the Ge p- and n-TFETs exhibit decent electrical properties of large ON-state current and steep sub-threshold slope ($S$ factor). Especially, $I_{\rm d}$ of 0.2 $\mu$A/μm is revealed at $V_{\rm g}-V_{\rm th}=V_{\rm d}=\pm 0.5$ V for Ge pTFETs, with the $S$ factor of 28 mV/dec at 7 K.
|
|
Received: 05 July 2018
Published: 23 October 2018
|
|
PACS: |
72.80.Cw
|
(Elemental semiconductors)
|
|
73.40.Gk
|
(Tunneling)
|
|
85.30.De
|
(Semiconductor-device characterization, design, and modeling)
|
|
85.30.Mn
|
(Junction breakdown and tunneling devices (including resonance tunneling devices))
|
|
|
Fund: Supported by the National Natural Science Foundation of China under Grant No 61504120, the Zhejiang Provincial Natural Science Foundation of China under Grant No LR18F040001, and the Fundamental Research Funds for the Central Universities. |
|
|
[1] | Zhang R, Huang P C, Lin J C , Taoka N, Takenaka M and Takagi S 2013 IEEE Trans. Electron Devices 60 927 | [2] | Ma X, Zhang R, Sun J, Shi Y and Zhao Y 2015 Chin. Phys. Lett. 32 045202 | [3] | Zhang Y Y, Cheng R, Xie S, Xu S, Yu X, Zhang R and Zhao Y 2017 Chin. Phys. Lett. 34 108101 | [4] | Zheng Z, Yu X, Zhang Y, Xie M, Cheng R and Zhao Y 2018 IEEE Trans. Electron Devices 65 895 | [5] | Seabaugh A C and Zhang Q 2010 Proc. IEEE 98 2095 | [6] | Ionescu A M and Riel H 2011 Nature 479 329 | [7] | Zhang S, Liang R, Wang J, Tan Z and Xu J 2017 Chin. Phys. B 26 018504 | [8] | Luong G V, Narimani K, Tiedemann A T, Bernardy P, Trellenkamp S, Zhao Q T and Mantl S 2016 IEEE Electron Device Lett. 37 950 | [9] | Sang W K, Kim J H, Liu T J K, Choi W Y and Park B G 2016 IEEE Trans. Electron Devices 63 1774 | [10] | Huang R, Huang Q, Chen S, Wu C, Wang J, An X and Wang Y 2014 Nanotechnology 25 505201 | [11] | Leonelli D, Vandooren A, Rooyackers R, Verhulst A S, Gendt S D, Heyns M M and Guido G 2010 Jpn. J. Appl. Phys. 49 04DC10 | [12] | Fischer I A, Bakibillah A S M, Golve M, Hahnel D, Isemann H, Kottantharayil A and Oehme M 2013 IEEE Electron Device Lett. 34 154 | [13] | Choi W Y, Park B G, Lee J D and Liu T J K 2007 IEEE Electron Device Lett. 28 743 | [14] | Liu Y, He J, Chan M, Du C X, Ye Y, Zhao W, Wu W, Deng W L and Wang W P 2014 Chin. Phys. B 23 097102 | [15] | Saraswat K C, Chi O C, Mohan T K, Nayfeh A and Mcintyre P 2005 Microelectron. Eng. 80 15 | [16] | Trumbore F A 1960 Bell Syst. Tech. J. 39 205 | [17] | Chroneos A and Bracht H 2014 Appl. Phys. Rev. 1 011301 | [18] | Bagga N, Kumar A, Bhattacharjee A and Dasgupta S 2017 Superlattices Microstruct. 109 545 | [19] | Toriumi A, Tabata T, Lee C H, Nishimura T, Kita K and Nagashio K 2009 Microelectron. Eng. 86 1571 | [20] | Li Z, An X, Li M, Yun Q, Lin M, Li M, Zhang X and Huang R 2012 IEEE Electron Device Lett. 33 1687 | [21] | Mueller M, Zhao Q T, Urban C, Sandow C, Buca D, Lenk S, Estévez S and Mantl S 2008 Mater. Sci. & Eng. B 154-155 168 | [22] | Chen C W, Tzeng J Y, Chung C T, Chien H P, Chien C H, Luo G L, Wang P Y and Tsui B Y 2013 IEEE Electron Device Lett. 35 6 | [23] | An X, Fan C H, Huang R and Zhang X 2009 Chin. Phys. Lett. 26 087304 | [24] | Zhang R, Tang X, Yu X, Li J and Zhao Y 2016 IEEE Electron Device Lett. 37 831 | [25] | Lee M H, Lin J C, Wei Y T, Chen C W, Tu W H, Zhuang H K and Tang M 2013 Tech. Dig.-Int. Electron. Devices Meet. (San Francisco Am. 3–5 December 2013) p 4.5.1 | [26] | Mookerjea S, Krishnan R, Datta S and Narayanan V 2009 IEEE Electron Device Lett. 30 1102 | [27] | Yang Y, Han G, Guo P, Wang W, Gong X, Wang L, Low K L and Yeo Y C 2013 IEEE Trans. Electron Devices 60 4048 | [28] | Sajjad R N, Chern W, Hoyt J L and Antoniadis D A 2016 IEEE Trans. Electron Devices 63 4380 | [29] | Jiang Z, Zhuang Y Q, Li C, Wang P and Liu Y Q 2016 Chin. Phys. B 25 027701 | [30] | Zhang R, Huang P C, Lin J C, Takenaka M and Takagi S 2012 Tech. Dig.-Int. Electron. Devices Meet. (San Francisco Am. 3–5 December 2012) p 16.1.1 | [31] | Blaeser S, Glass S, Schulte-Braucks C, Narimani K, Driesch N V D, Wirths S, Tiedemann A T, Trellenkamp S, Buca D, Zhao Q T and Mantl S 2016 Tech. Dig.-Int. Electron. Devices Meet. (San Francisco Am. 3–5 December 2016) p 22.3.1 | [32] | Yang Y, Su S, Guo P and Wang W 2012 Tech. Dig.-Int. Electron. Devices Meet. (San Francisco Am. 3–5 December 2012) p 16.3.1 | [33] | Kazazis D, Jannaty P, Zaslavsky A, Royer C L, Tabone C, Clavelier L and Cristoloveanu S 2009 Appl. Phys. Lett. 94 263508 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|