Chin. Phys. Lett.  2018, Vol. 35 Issue (11): 110303    DOI: 10.1088/0256-307X/35/11/110303
GENERAL |
Exact Equivalence between Quantum Adiabatic Algorithm and Quantum Circuit Algorithm
Hongye Yu1, Yuliang Huang2,1, Biao Wu1,3**
1International Center for Quantum Materials, Peking University, Beijing 100871
2Department of Radiation Oncology, Peking University Cancer Hospital and Institute, Beijing 100142
3Wilczek Quantum Center, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240
Cite this article:   
Hongye Yu, Yuliang Huang, Biao Wu 2018 Chin. Phys. Lett. 35 110303
Download: PDF(731KB)   PDF(mobile)(755KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We present a rigorous proof that quantum circuit algorithm can be transformed into quantum adiabatic algorithm with the exact same time complexity. This means that from a quantum circuit algorithm of $L$ gates we can construct a quantum adiabatic algorithm with time complexity of $O(L)$. Additionally, our construction shows that one may exponentially speed up some quantum adiabatic algorithms by properly choosing an evolution path.
Received: 07 October 2018      Published: 23 October 2018
PACS:  03.67.Ac (Quantum algorithms, protocols, and simulations)  
  03.67.Lx (Quantum computation architectures and implementations)  
  89.70.Eg (Computational complexity)  
Fund: Supported by the The National Key Research and Development Program of China under Grant Nos 2017YFA0303302 and 2018YFA030562, and the National Natural Science Foundation of China under Grant Nos 11334001 and 11429402.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/35/11/110303       OR      https://cpl.iphy.ac.cn/Y2018/V35/I11/110303
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Hongye Yu
Yuliang Huang
Biao Wu
[1]Nielsen M A and Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press)
[2]Farhi E, Goldstone J, Gutmann S and Sipser M 2000 arXiv:quant-ph/0001106v1
[3]Zhang Q, Gong J and Wu B 2014 New J. Phys. 16 123024
[4]Aharonov D, van Dam W, Kempe J, Landau Z, Lloyd S and Regev O 2007 SIAM J. Comput. 37 166
[5]van Dam W, Mosca M and Vazirani U 2001 Proceedings 2001 IEEE International Conference on Cluster Computing (Las Vegas, Vevada, USA 14–17 October 2001) p 279
[6]Kitaev A Y, Shen A H and Vyalyi M N 2002 Classical and Quantum Computatation (Rhode Island: American Mathematical Society)
[7]Diener R B, Wu B, Raizen M G and Niu Q 2002 Phys. Rev. Lett. 89 070401
Related articles from Frontiers Journals
[1] Bin-Lin Chen and Dan-Bo Zhang. Variational Quantum Eigensolver with Mutual Variance-Hamiltonian Optimization[J]. Chin. Phys. Lett., 2023, 40(1): 110303
[2] Lu-Ji Wang, Jia-Yi Lin, and Shengjun Wu. State Classification via a Random-Walk-Based Quantum Neural Network[J]. Chin. Phys. Lett., 2022, 39(5): 110303
[3] Xinran Ma, Z. C. Tu, and Shi-Ju Ran. Deep Learning Quantum States for Hamiltonian Estimation[J]. Chin. Phys. Lett., 2021, 38(11): 110303
[4] Huan-Yu Liu, Tai-Ping Sun, Yu-Chun Wu, and Guo-Ping Guo. Variational Quantum Algorithms for the Steady States of Open Quantum Systems[J]. Chin. Phys. Lett., 2021, 38(8): 110303
[5] Hongye Yu, Frank Wilczek, and Biao Wu. Quantum Algorithm for Approximating Maximum Independent Sets[J]. Chin. Phys. Lett., 2021, 38(3): 110303
[6] Cheng Xue, Zhao-Yun Chen, Yu-Chun Wu, and Guo-Ping Guo. Effects of Quantum Noise on Quantum Approximate Optimization Algorithm[J]. Chin. Phys. Lett., 2021, 38(3): 110303
[7] Hao Cao, Wenping Ma, Ge Liu, Liangdong Lü, Zheng-Yuan Xue. Quantum Secure Multiparty Computation with Symmetric Boolean Functions[J]. Chin. Phys. Lett., 2020, 37(5): 110303
[8] Frank Wilczek, Hong-Ye Hu, Biao Wu. Resonant Quantum Search with Monitor Qubits[J]. Chin. Phys. Lett., 2020, 37(5): 110303
[9] Li-Hua Lu, You-Quan Li. Quantum Approach to Fast Protein-Folding Time[J]. Chin. Phys. Lett., 2019, 36(8): 110303
[10] E. Rezaei Fard, K. Aghayar. Quantum Adiabatic Evolution for Pattern Recognition Problem[J]. Chin. Phys. Lett., 2017, 34(12): 110303
[11] Bo-Wen Ma, Wan-Su Bao, Tan Li, Feng-Guang Li, Shuo Zhang, Xiang-Qun Fu. A Four-Phase Improvement of Grover's Algorithm[J]. Chin. Phys. Lett., 2017, 34(7): 110303
[12] Chuan-Qi Liu, Chang-Hua Zhu, Lian-Hui Wang, Lin-Xi Zhang, Chang-Xing Pei. Polarization-Encoding-Based Measurement-Device-Independent Quantum Key Distribution with a Single Untrusted Source[J]. Chin. Phys. Lett., 2016, 33(10): 110303
[13] Xing Chen, Zhen-Wei Zhang, Huan Zhao, Nuan-Rang Wang, Ren-Fu Yang, Ke-Ming Feng. Exact Solution to Spin Squeezing of the Arbitrary-Range Spin Interaction and Transverse Field Model[J]. Chin. Phys. Lett., 2016, 33(10): 110303
[14] SONG Xiao-Tian, LI Hong-Wei, YIN Zhen-Qiang, LIANG Wen-Ye, ZHANG Chun-Mei, HAN Yun-Guang, CHEN Wei, HAN Zheng-Fu. Phase-Coding Self-Testing Quantum Random Number Generator[J]. Chin. Phys. Lett., 2015, 32(08): 110303
[15] ZHAO Shun-Cai, ZHANG Shuang-Ying, WU Qi-Xuan, JIA Jing. Left-Handedness with Three Zero-Absorption Windows Tuned by the Incoherent Pumping Field and Inter-Dot Tunnelings in a GaAs/AlGaAs Triple Quantum Dots System[J]. Chin. Phys. Lett., 2015, 32(5): 110303
Viewed
Full text


Abstract