Chin. Phys. Lett.  2018, Vol. 35 Issue (11): 113201    DOI: 10.1088/0256-307X/35/11/113201
ATOMIC AND MOLECULAR PHYSICS |
Simulation of Intermediate State Absorption Enhancement in Rare-Earth Ions by Polarization Modulated Femtosecond Laser Field
Wen-Jing Cheng**, Shi-Hua Zhao
School of Electrical & Electronic Information, Shangqiu Normal University, Shangqiu 476000
Cite this article:   
Wen-Jing Cheng, Shi-Hua Zhao 2018 Chin. Phys. Lett. 35 113201
Download: PDF(534KB)   PDF(mobile)(534KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We extend the third perturbation theory to study the polarization control behavior of the intermediate state absorption in Nd$^{3+}$ ions. The results show that coherent interference can occur between the single-photon and three-photon excitation pathways, and depends on the central frequency of the femtosecond laser field. Moreover, single-photon and three-photon absorptions have different polarization control efficiencies, and the relative weight of three-photon absorption in the whole excitation processes can increase with increasing the laser intensity. Therefore, the enhancement or suppression of the intermediate state absorption can be realized and manipulated by properly designing the intensity and central frequency of the polarization modulated femtosecond laser field. This research can not only enrich theoretical research methods for the up-conversion luminescence manipulation of rare-earth ions, but also can provide a clear physical picture for understanding and controlling multi-photon absorption in a multiple energy level system.
Received: 14 August 2018      Published: 23 October 2018
PACS:  32.80.Qk (Coherent control of atomic interactions with photons)  
  32.80.Wr (Other multiphoton processes)  
Fund: Supported by the National Natural Science Foundation of China under Grant Nos 51132004, 11474096, 11604199, U1704145 and 11747101, the Science and Technology Commission of Shanghai Municipality under Grant No 14JC1401500, the Henan Provincial Natural Science Foundation of China under Grant No 182102210117, and the Higher Education Key Program of He'nan Province of China under Grant Nos 17A140025 and 16A140030.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/35/11/113201       OR      https://cpl.iphy.ac.cn/Y2018/V35/I11/113201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Wen-Jing Cheng
Shi-Hua Zhao
[1]Auzel F 2004 Chem. Rev. 104 139
[2]Wang F and Liu X G 2009 Chem. Soc. Rev. 38 976
[3]Wintner E, Sorokin E and Sorokina I T 2001 Laser Phys. 11 1193
[4]Zhou P, Wang X, Ma Y, Lü H and Liu Z J 2012 Laser Phys. 22 1744
[5]Downing E, Hesselink L, Ralston J and Macfarlane R 1996 Science 273 1185
[6]Haase M and Schäfer H 2011 Angew. Chem. Int. Ed. 50 5808
[7]Wolska E, Kaszewski J, Kiełbik P, Grzyb J, Godlewski M M and Godlewski M 2014 Opt. Mater. 36 1655
[8]Zhang S A, Lu C H, Jia T Q, Qiu J R and Sun Z R 2013 Appl. Phys. Lett. 103 194104
[9]Zhang S A, Xu S W, Ding J X, Lu C H, Jia T Q, Qiu J R and Sun Z R 2014 Appl. Phys. Lett. 104 014101
[10]Yao Y, Zhang S, Zhang H, Ding J, Jia T, Qiu J and Sun Z 2015 Sci. Rep. 4 07295
[11]Zhang H, Yao Y H, Zhang S A, Lu C H and Sun Z R 2016 Chin. Phys. B 25 023201
[12]Zhang S A, Yao Y H et al 2015 Sci. Rep. 5 13337
[13]Yao Y H, Cheng W J, Zheng Y, Xu C, Liu P, Jia T Q, Qiu J R, Sun Z R and Zhang S A 2017 Laser Phys. Lett. 14 045301
[14]Wen F, Ali I, Hasan A, Li C B, Tang H J, Zhang Y F and Zhang Y P 2015 Opt. Lett. 40 4599
[15]Ahmed N, Khan G A, Wang R M, Hou J R, Gong R, Yang L M and Zhang Y P 2017 Opt. Lett. 42 1788
[16]Abdisa G, Ahmed I, Wang X X, Liu Z C, Wang H X and Zhang Y P 2016 Phys. Rev. A 94 023849
[17]Li C B, Jiang Z H, Zhang Y Q, Zhang Z Y, Wen F, Chen H X, Zhang Y P and Xiao M 2017 Phys. Rev. Appl. 7 014023
[18]Chuntonov L, Rybak L, Gandman A and Amitay Z 2008 J. Phys. B: At. Mol. Opt. Phys. 41 35504
[19]Chuntonov L, Rybak L, Gandman A and Amitay Z 2008 Phys. Rev. A 77 021403
[20]Chuntonov L, Rybak L, Gandman A and Amitay Z 2010 Phys. Rev. A 81 045401
Related articles from Frontiers Journals
[1] ChunMei Liu, Jörn Manz, Huihui Wang, and Yonggang Yang. Quantum Engineering of Helical Charge Migration in HCCI[J]. Chin. Phys. Lett., 2022, 39(12): 113201
[2] Qifang Peng, Zhaoyang Peng, Yue Lang, Yalei Zhu, Dongwen Zhang, Zhihui Lü, and Zengxiu Zhao. Decoherence Effects of Terahertz Generation in Solids under Two-Color Femtosecond Laser Fields[J]. Chin. Phys. Lett., 2022, 39(5): 113201
[3] Mo-Juan Yin, Tao Wang, Xiao-Tong Lu, Ting Li, Ye-Bing Wang, Xue-Feng Zhang, Wei-Dong Li, Augusto Smerzi, and Hong Chang. Rabi Spectroscopy and Sensitivity of a Floquet Engineered Optical Lattice Clock[J]. Chin. Phys. Lett., 2021, 38(7): 113201
[4] Junyang Yuan, Yixuan Ma, Renyuan Li, Huanyu Ma, Yizhu Zhang, Difa Ye, Zhenjie Shen, Tianmin Yan, Xincheng Wang, Matthias Weidemüller, Yuhai Jiang. Momentum Spectroscopy for Multiple Ionization of Cold Rubidium in the Elliptically Polarized Laser Field[J]. Chin. Phys. Lett., 2020, 37(5): 113201
[5] Kun-Peng Wang, Jun Zhuang, Xiao-Dong He, Rui-Jun Guo, Cheng Sheng, Peng Xu, Min Liu, Jin Wang, Ming-Sheng Zhan. High-Fidelity Manipulation of the Quantized Motion of a Single Atom via Stern–Gerlach Splitting[J]. Chin. Phys. Lett., 2020, 37(4): 113201
[6] Peng-Ju Tang, Peng Peng, Xiang-Yu Dong, Xu-Zong Chen, Xiao-Ji Zhou. Implementation of Full Spin-State Interferometer[J]. Chin. Phys. Lett., 2019, 36(5): 113201
[7] Guang Yang, Wei Li, Li-Xiang Cen. Nonadiabatic Population Transfer in a Tangent-Pulse Driven Quantum Model[J]. Chin. Phys. Lett., 2018, 35(1): 113201
[8] Wen-Jing Cheng, Guo Liang, Ping Wu, Tian-Qing Jia, Zhen-Rong Sun, Shi-An Zhang. Coherent Features of Resonance-Mediated Two-Photon Absorption Enhancement by Varying the Energy Level Structure, Laser Spectrum Bandwidth and Central Frequency[J]. Chin. Phys. Lett., 2017, 34(8): 113201
[9] Jian-Hong Chen, Song-Feng Zhao, Guo-Li Wang, Xiao-Ping Zheng, Zheng-Rong Zhang. Angle-Resolved Electron Spectra of F$^{-}$ Ions by Few-Cycle Laser Pulses[J]. Chin. Phys. Lett., 2017, 34(6): 113201
[10] Yan-Li Xue, Ke Zhang, Bao-Hua Feng, Zhi-Yuan Li. Inhibition of Atomic Decay in Strongly Coupled Photonic Crystal Cavities[J]. Chin. Phys. Lett., 2016, 33(07): 113201
[11] Qi-Chun Liu, Han Cai, Ying-Shan Zhang, Jian-She Liu, Wei Chen. Autler–Townes Splitting in a ${\it \Delta}$-Type Quantum Three-Level System[J]. Chin. Phys. Lett., 2016, 33(07): 113201
[12] ZHANG Jun, GU Zhen-Jie, QIAN Peng, HAN Zhi-Guang, CHEN Jie-Fei. Cold Atom Cloud with High Optical Depth Measured with Large Duty Cycle[J]. Chin. Phys. Lett., 2015, 32(06): 113201
[13] GONG Shi-Jie, ZHOU Fei, WU Hao-Yu, WAN Wei, CHEN Liang, FENG Mang. Spectra of 42S1/2→32D5/2 Transitions of a Single Trapped 40Ca+ Ion[J]. Chin. Phys. Lett., 2015, 32(01): 113201
[14] CHEN Jing-Dong, FANG Yu-Hong, ZHANG Ting. High-Precision Two-Dimensional Atom Localization in a Cascade-Type Atomic System[J]. Chin. Phys. Lett., 2014, 31(10): 113201
[15] NIU Zhen-Xia, XUE Ju-Kui. Selective Tunneling Dynamics of Bosons with Effective Three-Particle Interactions[J]. Chin. Phys. Lett., 2014, 31(10): 113201
Viewed
Full text


Abstract