Chin. Phys. Lett.  2018, Vol. 35 Issue (10): 103101    DOI: 10.1088/0256-307X/35/10/103101
ATOMIC AND MOLECULAR PHYSICS |
Theoretical Investigation on the Low-Lying States of LaP Molecule
Nagat Elkahwagy1**, Atif Ismail1,2, S. M. A. Maize3, K. R. Mahmoud1
1Department of Physics, Faculty of Science, Kafrelsheikh University, Kafr El-Sheikh, Egypt
2Department of Physics, Faculty of Applied Sciences, Umm Al Qura University, Makkah, Saudi Arabia
3Department of Physics, Faculty of Science, Menoufia University, Shebin El-Kom, Egypt
Cite this article:   
Nagat Elkahwagy, Atif Ismail, S. M. A. Maize et al  2018 Chin. Phys. Lett. 35 103101
Download: PDF(477KB)   PDF(mobile)(464KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The completely unexplored LaP molecule is investigated by ab initio methods. Potential energy curves for the low-lying states of LaP are constructed by means of the diffusion Monte Carlo method combined with three different trial functions. Spectroscopic constants are also numerically derived and the ground state is assigned, looking forward to experimental comparisons. Moreover, variations of the permanent dipole moments as a function of the internuclear separation for the two lowest states of the diatomic LaP are studied and analyzed.
Received: 26 June 2018      Published: 15 September 2018
PACS:  31.15.E-  
  31.50.Bc (Potential energy surfaces for ground electronic states)  
  31.15.V- (Electron correlation calculations for atoms, ions and molecules)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/35/10/103101       OR      https://cpl.iphy.ac.cn/Y2018/V35/I10/103101
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Nagat Elkahwagy
Atif Ismail
S. M. A. Maize
K. R. Mahmoud
[1]Michael D and Stoll H 1989 Theor. Chim. Acta 75 369
[2]Laerdahl J K, Fægri K, Visscher L and Saue T 1998 J. Chem. Phys. 109 10806
[3]Hong G Y, Michael D and Li L M 2001 Chem. Phys. Lett. 334 396
[4]Cao X Y et al 2002 Sci. Chin. B 45 91
[5]Casarrubios M and Seijo L 1999 J. Chem. Phys. 110 784
[6]Küchle W, Michael D and Stoll H 1997 J. Phys. Chem. 101 7128
[7]Wang X F, Chertihin G V and Andrews L 2002 J. Phys. Chem. A 106 9213
[8]Wittborn C and Wahlgren U 1995 Chem. Phys. 201 357
[9]Mahmoud S and Korek M 2014 Can. J. Chem. 92 855
[10]Ram R S and Bernarth P F 1996 J. Chem. Phys. 104 6444
[11]Yarlagadda S, Mukund S and Nakhate S G 2013 Chem. Phys. Lett. 573 1
[12]Bernard A and Chevillard J 2001 J. Mol. Spectrosc. 208 150
[13]Mukund S, Yarlagadda S, Bhattacharyya S and Nakhate S G 2012 J. Chem. Phys. 137 234309
[14]Kaledin L A, McCord J E and Heaven M C 1994 J. Opt. Soc. Am. B 11 219
[15]Schall H, Dulick M and Field R W 1987 J. Chem. Phys. 87 2898
[16]Barrow R F, Bastin M W, Moore D L G and Pott C J 1967 Nature 215 1072
[17]Chen L H and Shang R C 2003 Commun. Theor. Phys. 39 323
[18]Cao X Y and Michael D 2005 J. Theor. Comput. Chem. 4 583
[19]Huber K P and Herzberg G 1979 Molecular Spectra and Molecular Structure, Constants of Diatomic Molecules (New York: Van Nostrand)
[20]Kalamse V, Gaikwad S and Chaudhari A 2010 Bull. Mater. Sci. 33 233
[21]Hong B, Cheng L, Wang M Y and Wu Z J 2010 Mol. Phys. 108 25
[22]Wagner L K, Bajdich M and Mitas L 2009 J. Comput. Phys. 228 3390
[23]Anderson J B 2007 Quantum Monte Carlo: Origins, Development, Applications (UK: Oxford Univ Press)
[24]Nightingale M P and Umrigar C J 1999 Quantum Monte Carlo Methods in Physics and Chemistry (Netherlands: Springer)
[25]Sobol L M 1994 A Primer for the Monte Carlo Method (Boca Raton Fl.: CRC Press)
[26]Schmidt M W, Boatz J A, Baldridge K K, Elbert S T, Gordon M S, Jensen J H, Koseki S, Matsunaga N, Nguyen K A, Su S, windus T L, Dupuis M and Montgomery J A 1993 J. Comput. Chem. 14 1347
[27]Becke A D 1988 Phys. Rev. A 38 3098
[28]Lee C, Yang W and Parr R G 1988 Phys. Rev. B 37 785
[29]Stephens P, Devlin F, Chabalowski C and Frisch M J 1994 J. Phys. Chem. 98 11623
[30]Becke A D 1993 J. Chem. Phys. 98 5648
[31]Ermler W C, Roos R B and Christiansen P A 1991 Int. J. Quantum Chem. 40 829
[32]Burkatzki M, Filippi C and Michael D 2007 J. Chem. Phys. 126 234105
[33]Elkhattabi S, Daoudi A, Flament J P and Berthier G 1999 Chem. Phys. 241 257
[34]Chen N, Feng C P, Zhang Z Y, Liu R P, Gao Y, Li M and Sugiura N 2012 J. Taiwan Insit. Chem. Engin. 43 783
[35]Huang W Y, Li D, Liu Z Q, Tao Q, Zhu Y, Yang J and Zhang Y M 2014 Chem. Eng. J. 236 191
[36]Dithmer L, Lipton A S, Reitzel K, Warner T E, Lundberg D and Nielsen U G 2015 Environ. Sci. Technol. 49 4559
[37]Xu R, Zhang M Y, Mortimer R J G and Pan G 2017 Environ. Sci. Technol. 51 3418
[38]Zhang W K and Tian Y 2015 Front. Chem. Sci. Eng. 9 209
[39]Xie F, Da D, Zhang F, Zhang J, Han X, Ge Y and Li G 2013 Chem. - Asian J. 25 5759
[40]Xie J, Wang Z, Lu S Y, Wu D Y, Zhang Z J and Kong H N 2014 Chem. Eng. J. 254 163
[41]Tientega F and Harrison J F 1994 Chem. Phys. Lett. 223 202
[42]Daoudi A, Baba M F, Elkhattabi S, Rogemond F and Chermette H 2003 Mol. Phys. 101 2929
[43]Tong G M S, Jeung G H and Cheung A S C 2003 J. Chem. Phys. 118 9224
[44]Chaieb M, Habli H, Mejrissi L, Oujia B and Gadéa F X 2014 Int. J. Quantum Chem. 114 731
[45]Habli H, Mejrissi L, Issaoui N, Yaghmour S J, Oujia B and Gadéa F X 2015 Int. J. Quantum Chem. 115 172
[46]Dardouri R, Issa K, Oujia B and Gadéa F X 2012 Int. J. Quantum Chem. 112 2724
[47]Habli H, Ghalla H, Oujia B and Gadéa F X 2011 Eur. Phys. J. D 64 5
[48]Schaefer H F 1977 Applications of Electronic Structure Theory (New Yourk: Plenum Press)
Related articles from Frontiers Journals
[1] Weiqing Zhou and Shengjun Yuan. A Time-Dependent Random State Approach for Large-Scale Density Functional Calculations[J]. Chin. Phys. Lett., 2023, 40(2): 103101
[2] Haijiang Liu, Yuanji Xu, Yigui Zhong, Jianyu Guan, Lingyuan Kong, Junzhang Ma, Yaobo Huang, Qiuyun Chen, Genfu Chen, Ming Shi, Yi-feng Yang, Hong Ding. Hybridization Effects Revealed by Angle-Resolved Photoemission Spectroscopy in Heavy-Fermion Ce$_{2}$IrIn$_{8}$[J]. Chin. Phys. Lett., 2019, 36(9): 103101
[3] Yi-Bo Li, Li-Jin Zeng, Chun-Xiang Zhao, Chun-Yao Niu. First-Principles Study of Magnetic Properties of TM$_{13}$ and TM$_{13}$@Au$_{32}$ Clusters (TM=Mn, Co)[J]. Chin. Phys. Lett., 2018, 35(10): 103101
[4] WU Dong-Lan, TAN Bin, WAN Hui-Jun, XIE An-Dong, DING Da-Jun. The Analytical Potential Energy Function of NH Radical Molecule in External Electric Field[J]. Chin. Phys. Lett., 2015, 32(07): 103101
[5] CHEN Yu-Hong, ZHANG Bing-Wen, ZHANG Cai-Rong, ZHANG Mei-Ling, KANG Long, LUO Yong-Chun. First-Principle Study of H2 Adsorption on Mg3N2(110) Surface[J]. Chin. Phys. Lett., 2014, 31(06): 103101
[6] Masood Yousaf, M. A. Saeed, Ahmad Radzi Mat Isa, H. A. Rahnamaye Aliabad, M. R. Sahar . An Insight into the Structural, Electronic and Transport Characteristics of XIn2S4 (X = Zn, Hg) Thiospinels using a Highly Accurate All-Electron FP-LAPW+Lo Method[J]. Chin. Phys. Lett., 2013, 30(7): 103101
[7] REN Juan , ZHANG Hong, CHENG Xin-Lu. First-Principles Study of Hydrogen Binding Property in Alkaline-Earth (Be, Mg, Ca) Metal-Doped Closo-Boranes[J]. Chin. Phys. Lett., 2013, 30(3): 103101
[8] WANG Zhi-Ping ZHANG Feng-Shou, ZHU Yun, XIE Guan-Hao. Angle-Dependent Irradiation of C4 in Femtosecond Laser Pulses[J]. Chin. Phys. Lett., 2012, 29(7): 103101
[9] SHI Yu, SUN Qing-Qing, DONG Lin, LIU Han, DING Shi-Jin, ZHANG Wei. Atomic Layer Deposition of Al2O3 on H-Passivated GeSi: Initial Surface Reaction Pathways with H/GeSi(100)-2×1[J]. Chin. Phys. Lett., 2009, 26(5): 103101
Viewed
Full text


Abstract