Chin. Phys. Lett.  2017, Vol. 34 Issue (9): 097304    DOI: 10.1088/0256-307X/34/9/097304
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Improved Operation Characteristics for Nonvolatile Charge-Trapping Memory Capacitors with High-$\kappa$ Dielectrics and SiGe Epitaxial Substrates
Zhao-Zhao Hou1,2, Gui-Lei Wang1,2, Jin-Juan Xiang1,2, Jia-Xin Yao1,2, Zhen-Hua Wu1, Qing-Zhu Zhang1, Hua-Xiang Yin1,2**
1Key Laboratory of Microelectronics Devices & Integrated Technology, Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029
2University of Chinese Academy of Sciences, Beijing 100049
Download: PDF(1497KB)   PDF(mobile)(1495KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A novel high-$\kappa$ Al$_{2}$O$_{3}$/HfO$_{2}$/Al$_{2}$O$_{3}$ nanolaminate charge trapping memory capacitor structure based on SiGe substrates with low interface densities is successfully fabricated and investigated. The memory capacitor exhibits excellent program-erasable characteristics. A large memory window of $\sim $4 V, a small leakage current density of $\sim $2 $\times$ 10$^{-6}$ Acm$^{-2}$ at a gate voltage of 7 V, a high charge trapping density of $1.42\times 10^{13}$ cm$^{-2}$ at a working voltage of $\pm$10 V and good retention characteristics are observed. Furthermore, the programming ($\Delta V_{\rm FB}=2.8$ V at 10 V for 10 μs) and erasing speeds ($\Delta V_{\rm FB}=-1.7$ V at $-$10 V for 10 μs) of the fabricated capacitor based on SiGe substrates are significantly improved as compared with counterparts reported earlier. It is concluded that the high-$\kappa$ Al$_{2}$O$_{3}$/HfO$_{2}$/Al$_{2}$O$_{3}$ nanolaminate charge trapping capacitor structure based on SiGe substrates is a promising candidate for future nano-scaled nonvolatile flash memory applications.
Received: 05 June 2017      Published: 15 August 2017
PACS:  73.40.Qv (Metal-insulator-semiconductor structures (including semiconductor-to-insulator))  
  77.55.D-  
  77.55.dj (For nonsilicon electronics (Ge, III-V, II-VI, organic electronics))  
  77.55.Px (Epitaxial and superlattice films)  
Fund: Supported by the National Science and Technology Major Project of China under Grant No 2013ZX02303007, the National Key Research and Development Program of China under Grant No 2016YFA0301701, and the Youth Innovation Promotion Association of the Chinese Academy of Sciences under Grant No 2016112.
TRENDMD:   
Cite this article:   
Zhao-Zhao Hou, Gui-Lei Wang, Jin-Juan Xiang et al  2017 Chin. Phys. Lett. 34 097304
URL:  
http://cpl.iphy.ac.cn/10.1088/0256-307X/34/9/097304       OR      http://cpl.iphy.ac.cn/Y2017/V34/I9/097304
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Zhao-Zhao Hou
Gui-Lei Wang
Jin-Juan Xiang
Jia-Xin Yao
Zhen-Hua Wu
Qing-Zhu Zhang
Hua-Xiang Yin
[1]Maikap S et al 2011 J. Nanomater. 2011 810879
[2]Lan X et al 2013 J. Appl. Phys. 114 044104
[3]Lee K H et al 2013 Jpn. J. Appl. Phys. 53 014001
[4]Capogreco E et al 2015 IEEE Int. Memory. Workshop (Monterey CA USA 17–20 May 2015) p 109
[5]Capogreco E et al 2015 IEEE Int. Electron. Devices Meeting (Washington DC 7–9 December 2015) p 3.1.1
[6]Liu L J et al 2010 Solid-State Electron. 54 1113
[7]Liu L J et al 2012 IEEE Electron Device Lett. 33 1264
[8]Zhang E et al 2014 ACS Nano 9 612
[9]Verrelli E and Tsoukalas D 2011 Microelectron. Eng. 88 1189
[10]Nicollian E H and Brews J R 1982 Metal Oxide Semiconductor (MOS) Physics and Technology (New York: Wiley) vol 1987 chap 5 p 214
[11]Ando T et al 2017 IEEE Electron Device Lett. 38 303
[12]Maikap S et al 2008 Nanotechnology 19 435202
[13]Maikap S et al 2007 Semicond. Sci. Technol. 22 884
[14]Maikap S et al 2009 J. Electrochem. Soc. 156 K28
[15]Wang S et al 2010 Appl. Phys. Lett. 96 143109
[16]Zhou G et al 2015 Curr. Appl. Phys. 15 279
[17]Shi Y et al 1998 J. Appl. Phys. 84 2358
[18]Zhu C et al 2010 Appl. Phys. Lett. 97 253503
[19]Qiu X Y et al 2014 Thin Solid Films 562 674
[20]Spassov D et al 2016 Thin Solid Films 614 7
Related articles from Frontiers Journals
[1] Yuan Liu, Li Wang, Shu-Ting Cai, Ya-Yi Chen, Rongsheng Chen, Xiao-Ming Xiong, Kui-Wei Geng. Temperature Dependence of Electrical Characteristics in Indium-Zinc-Oxide Thin Film Transistors from 10K to 400K[J]. Chin. Phys. Lett., 2018, 35(9): 097304
[2] Bin-Xu, Jing-Ping Xu, Lu Liu, Yong Su. Improvements of Interfacial and Electrical Properties for Ge MOS Capacitor with LaTaON Gate Dielectric by Optimizing Ta Content[J]. Chin. Phys. Lett., 2018, 35(7): 097304
[3] Zhao-Zhao Hou, Gui-Lei Wang, Jia-Xin Yao, Qing-Zhu Zhang, Hua-Xiang Yin. Improvement of Operation Characteristics for MONOS Charge Trapping Flash Memory with SiGe Buried Channel[J]. Chin. Phys. Lett., 2018, 35(5): 097304
[4] Qi-Wen Zheng, Jiang-Wei Cui, Ying Wei, Xue-Feng Yu, Wu Lu, Diyuan Ren, Qi Guo. Bias Dependence of Radiation-Induced Narrow-Width Channel Effects in 65nm NMOSFETs[J]. Chin. Phys. Lett., 2018, 35(4): 097304
[5] Ya-Yi Chen, Yuan Liu, Zhao-Hui Wu, Li Wang, Bin Li, Yun-Fei En, Yi-Qiang Chen. Low-Frequency Noise in Amorphous Indium Zinc Oxide Thin Film Transistors with Aluminum Oxide Gate Insulator[J]. Chin. Phys. Lett., 2018, 35(4): 097304
[6] Can Li, Cong-Wei Liao, Tian-Bao Yu, Jian-Yuan Ke, Sheng-Xiang Huang, Lian-Wen Deng. Concise Modeling of Amorphous Dual-Gate In-Ga-Zn-O Thin-Film Transistors for Integrated Circuit Designs[J]. Chin. Phys. Lett., 2018, 35(2): 097304
[7] Sheng-Kai Wang, Lei Ma, Hu-Dong Chang, Bing Sun, Yu-Yu Su, Le Zhong, Hai-Ou Li, Zhi Jin, Xin-Yu Liu, Hong-Gang Liu. Positive Bias Temperature Instability Degradation of Buried InGaAs Channel nMOSFETs with InGaP Barrier Layer and Al$_{2}$O$_{3}$ Dielectric[J]. Chin. Phys. Lett., 2017, 34(5): 097304
[8] Han-Han Lu, Jing-Ping Xu, Lu Liu. Interfacial and Electrical Properties of GaAs Metal-Oxide-Semiconductor Capacitor with ZrAlON as the Interfacial Passivation Layer[J]. Chin. Phys. Lett., 2017, 34(4): 097304
[9] Yuan Liu, Kai Liu, Rong-Sheng Chen, Yu-Rong Liu, Yun-Fei En, Bin Li, Wen-Xiao Fang. Total Ionizing Dose Radiation Effects in the P-Type Polycrystalline Silicon Thin Film Transistors[J]. Chin. Phys. Lett., 2017, 34(1): 097304
[10] Yi-Tao He, Ming Qiao, Lu Li, Gang Dai, Bo Zhang, Zhao-Ji Li. A Lateral Regulator Diode with Field Plates for Light-Emitting-Diode Lighting[J]. Chin. Phys. Lett., 2016, 33(09): 097304
[11] Qi-Wen Zheng, Jiang-Wei Cui, Hang Zhou, De-Zhao Yu, Xue-Feng Yu, Qi Guo. Hot-Carrier Effects on Total Dose Irradiated 65nm n-Type Metal-Oxide-Semiconductor Field-Effect Transistors[J]. Chin. Phys. Lett., 2016, 33(07): 097304
[12] Lan-Feng Tang, Hai Lu, Fang-Fang Ren, Dong Zhou, Rong Zhang, You-Dou Zheng, Xiao-Ming Huang,. Electrical Instability of Amorphous-Indium-Gallium-Zinc-Oxide Thin-Film Transistors under Ultraviolet Illumination[J]. Chin. Phys. Lett., 2016, 33(03): 097304
[13] SHEN Hua-Jun, TANG Ya-Chao, PENG Zhao-Yang, DENG Xiao-Chuan, BAI Yun, WANG Yi-Yu, LI Cheng-Zhan, LIU Ke-An, LIU Xin-Yu. Fabrication and Characterization of 1700 V 4H-SiC Vertical Double-Implanted Metal-Oxide-Semiconductor Field-Effect Transistors[J]. Chin. Phys. Lett., 2015, 32(12): 097304
[14] XIANG Lan-Yi, YING Jun, HAN Jin-Hua, WANG Wei, XIE Wen-Fa. Solution-Processed High Mobility Top-Gate N-Channel Polymer Field-Effect Transistors[J]. Chin. Phys. Lett., 2015, 32(09): 097304
[15] LIU Yuan, WU Wei-Jing, QIANG Lei, WANG Lei, EN Yun-Fei, LI Bin. Temperature-Dependent Drain Current Characteristics and Low Frequency Noises in Indium Zinc Oxide Thin Film Transistors[J]. Chin. Phys. Lett., 2015, 32(08): 097304
Viewed
Full text


Abstract