Chin. Phys. Lett.  2017, Vol. 34 Issue (9): 096201    DOI: 10.1088/0256-307X/34/9/096201
New Insights on the Deflection and Internal Forces of a Bending Nanobeam
De-Min Zhao, Jian-Lin Liu**
Department of Engineering Mechanics, College of Pipeline and Civil Engineering, China University of Petroleum (East China), Qingdao 266580
Download: PDF(509KB)   PDF(mobile)(505KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Nanowires, nanofibers and nanotubes have been widely used as the building blocks in micro/nano-electromechanical systems, energy harvesting or storage devices, and small-scaled measurement equipment. We report that the surface effects of these nanobeams have a great impact on their deflection and internal forces. A simply supported nanobeam is taken as an example. For the displacement and shear force of the nanobeam, its dangerous sections are different from those predicted by the conventional beam theory, but for the bending moment, the dangerous section is the same. Moreover, the values of these three quantities for the nanobeam are all distinct from those calculated from the conventional beam model. These analyses shed new light on the stiffness and strength check of nanobeams, which are beneficial to engineer new-types of nano-materials and nano-devices.
Received: 16 May 2017      Published: 15 August 2017
PACS:  62.23.Hj (Nanowires)  
  62.25.-g (Mechanical properties of nanoscale systems)  
  68.35.Gy (Mechanical properties; surface strains)  
Fund: Supported by the National Natural Science Foundation of China under Grant Nos 11672334, 11672335 and 11611530541, and the Fundamental Research Funds for the Central Universities under Grant No 15CX08004A.
Cite this article:   
De-Min Zhao, Jian-Lin Liu 2017 Chin. Phys. Lett. 34 096201
URL:       OR
E-mail this article
E-mail Alert
Articles by authors
De-Min Zhao
Jian-Lin Liu
[1]Cui Y, Zhong Z H, Wang D L, Wang W U and Lieber C M 2003 Nano Lett. 3 149
[2]Wang Q and Arash B 2014 Comput. Mater. Sci. 82 350
[3]Ouyang G, Wang C X and Yang G W 2009 Chem. Rev. 109 4221
[4]Jing G Y, Duan H L, Sun X M, Zhang Z S, Xu J, Li Y D, Wang J X and Yu D P 2006 Phys. Rev. B 73 235409
[5]Chen C Q, Shi Y, Zhang Y S, Zhu J and Yan Y J 2006 Phys. Rev. Lett. 96 075505
[6]Cuenot S, Fretigny C, Demoustier-Champagne S and Nysten B 2004 Phys. Rev. B 69 165410
[7]Liu J L, Mei Y, Xia R and Zhu W L 2012 Physica E 44 2050
[8]He J and Lilley C M 2008 Nano Lett. 8 1798
[9]Li H, Yang Z, Zhang Y M and Wen B C 2010 Chin. Phys. Lett. 27 126201
[10]Jiang L Y and Yan Z 2010 Physica E 42 2274
[11]Wang G F and Feng X Q 2009 Appl. Phys. Lett. 94 141913
[12]Wang G F and Feng X Q 2009 J. Phys. D 42 155411
[13]Liu J L, Sun J and Zuo P C 2016 Acta Mech. Solida Sin. 29 192
[14]Liu J L, Xia R and Zhou Y T 2011 Chin. Phys. Lett. 28 116201
[15]Wang G F and Feng X Q 2007 Appl. Phys. Lett. 90 231904
[16]He J and Lilley C M 2008 Appl. Phys. Lett. 93 263108
[17]Zhao D M, Liu J L and Wang L 2016 Int. J. Mech. Sci. 113 184
[18]Quan J and Yang X Y 2015 Acta Phys. Sin. 64 116201 (in Chinese)
[19]Lin Y, Peng J, Liu Y H, Xu Z H, Shan D B and Guo B 2014 Acta Phys. Sin. 63 016201 (in Chinese)
[20]Wu H A, Chen J and Liu H 2015 J. Phys. Chem. C 119 13652
[21]Gurtin M E and Murdoch A I 1975 Arch. Ration. Mechan. Anal. 57 291
[22]Cammarata R C 1994 Prog. Surf. Sci. 46 1
Related articles from Frontiers Journals
[1] Ke-Jie Wang, Wei Wang, Min-Hao Zhang, Xiao-Qian Zhang, Pei Yang, Bo Liu, Ming Gao, Da-Wei Huang, Jun-Ran Zhang, Yu-Jie Liu, Xue-Feng Wang, Feng-Qiu Wang, Liang He, Yong-Bing Xu, Rong Zhang. Weak Anti-Localization and Quantum Oscillations in Topological Crystalline Insulator PbTe[J]. Chin. Phys. Lett., 2017, 34(2): 096201
[2] Yan Lu, Wen-Gang Lu, Li Wang. Structure Dependence of Excitonic Effects in Chiral Graphene Nanoribbons[J]. Chin. Phys. Lett., 2017, 34(1): 096201
[3] WAN Lei, GAO Tao, MA Shi-Jia, LU Peng-Fei, LI Peng. First-Principles Study of Ag-Doped GaAs Nanowires[J]. Chin. Phys. Lett., 2013, 30(6): 096201
[4] ZENG Ya-Ping, WANG Yan-Guo, QU Bai-Hua, and YU Hong-Chun. Cathode-Control Alloying at an Au-ZnSe Nanowire Contact via in Situ Joule Heating[J]. Chin. Phys. Lett., 2012, 29(8): 096201
[5] CHEN Ke, HE Jian-Jun, LI Ming-Yu, LaPierre R. Fabrication of GaAs Nanowires by Colloidal Lithography and Dry Etching[J]. Chin. Phys. Lett., 2012, 29(3): 096201
[6] QIU Ming-Xia, RUAN Shuang-Chen**, GAO Biao, HUO Kai-Fu, ZHAI Jian-Pang, LI Ling, LIAO Hui, XU Xin-Tong . H2-Assistance One-Step Growth of Si Nanowires and Their Growth Mechanism[J]. Chin. Phys. Lett., 2011, 28(10): 096201
[7] XIE Shi-Feng, CHEN Shang-Da**, SOH Ai-Kah . The Effect of Atomic Vacancies and Grain Boundaries on Mechanical Properties of GaN Nanowires[J]. Chin. Phys. Lett., 2011, 28(6): 096201
[8] LI Bin, **, LI Chuan-Xi, WEI Cheng-Long, . Surface Effects on the Postbuckling of Nanowires[J]. Chin. Phys. Lett., 2011, 28(4): 096201
[9] YU Yan-Long, ZHENG Li-Hui, XU Xin, SUN Hong-Yu** . Thermal Expansion Behavior of Hexagonal ZnS Single-Crystal Nanowires Embedded in Anodized Aluminum Oxide Template[J]. Chin. Phys. Lett., 2010, 27(10): 096201
[10] ZHANG Dong-Dong, XUE Cheng-Shan, ZHUANG Hui-Zhao, HUANG Ying-Long, WANG Zou-Ping, WANG Ying, GUO Yong-Fu. Fabrication and Characterization of Mg-Doped GaN Nanowires[J]. Chin. Phys. Lett., 2008, 25(11): 096201
[11] NIE Chao, ZHANG Rong, XIE Zi-Li, XIU Xiang-Qiang, LIU Bin, FU De-Yi, LIU Qi-Jia, HAN Ping, GU Shu-Lin, SHI Yi, ZHENG You-Dou. Synthesis of [100] Wurtzite InN Nanowires and [011] Zinc-Blende InN Nanorods[J]. Chin. Phys. Lett., 2008, 25(5): 096201
[12] Cheng Zeng, Yi Li, Jin-Song Xia. Controllable Fabrication of GeSi Nanowires in Diameter of About 10nm Using the Top-Down Approach[J]. Chin. Phys. Lett., 2017, 34(11): 096201
Full text