CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
|
|
|
|
A Bright Single-Photon Source from Nitrogen-Vacancy Centers in Diamond Nanowires |
Shen Li1,2, Cui-Hong Li1,3,4, Bo-Wen Zhao1,2, Yang Dong1,2, Cong-Cong Li1,2, Xiang-Dong Chen1,2, Ya-Song Ge3,4, Fang-Wen Sun1,2** |
1Key Lab of Quantum Information, Chinese Academy of Sciences, University of Science and Technology of China, Hefei 230026 2Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026 3Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029 4University of Chinese Academy of Sciences, Beijing 100049
|
|
Cite this article: |
Shen Li, Cui-Hong Li, Bo-Wen Zhao et al 2017 Chin. Phys. Lett. 34 096101 |
|
|
Abstract Single-photon flux is one of the crucial properties of nitrogen vacancy (NV) centers in diamond for its application in quantum information techniques. Here we fabricate diamond conical nanowires to enhance the single-photon count rate. Through the interaction between tightly confined optical mode in nanowires and NV centers, the single-photon lifetime is much shortened and the collection efficiency is enhanced. As a result, the detected single-photon rate can be at 564 kcps, and the total detection coefficient can be 0.8%, which is much higher than that in bulk diamond. Such a nanowire single-photon device with high photon flux can be applied to improve the fidelity of quantum computation and the precision of quantum sensors.
|
|
Received: 30 March 2017
Published: 15 August 2017
|
|
PACS: |
61.72.-y
|
(Defects and impurities in crystals; microstructure)
|
|
42.50.Dv
|
(Quantum state engineering and measurements)
|
|
|
Fund: Supported by the National Key Research and Development Program of China under Grant No 2017YFA0304504, and the National Natural Science Foundation of China under Grant Nos 11374290, 61522508, 91536219 and 11504363. |
|
|
[1] | Kurtsiefer C, Mayer S, Zarda P and Weinfurter H 2000 Phys. Rev. Lett. 85 290 | [2] | Babinec T M, Hausmann B J M, Khan M, Zhang Y, Maze J R, Hemmer P R and Lončar M 2010 Nat. Nanotechnol. 5 195 | [3] | Aharonovich I, Castelletto S, Simpson D A, Su C H, Greentree A D and Prawer S 2011 Rep. Prog. Phys. 74 076501 | [4] | Mizuochi N, Makino T, Kato H, Takeuchi D, Ogura M, Okushi H, Nothaft M, Neumann P, Gali A, Jelezko F, Wrachtrup J and Yamasaki S 2012 Nat. Photon. 6 299 | [5] | Waldherr G, Wang Y, Zaiser S, Jamali M, Schulte-Herbrüggen T, Abe H, Ohshima T, Isoya J, Du J F, Neumann P and Wrachtrup J 2014 Nature 506 204 | [6] | Maze J R, Stanwix P L, Hodges J S, Hong S, Taylor J M, Cappellaro P, Jiang L, Dutt M V G, Togan E, Zibrov A S, Yacoby A, Walsworth R L and Lukin M D 2008 Nature 455 644 | [7] | Rondin L, Tetienne J P, Hingant T, Roch J F, Maletinsky P and Jacques V 2014 Rep. Prog. Phys. 77 056503 | [8] | Chen X D, Dong C H, Sun F W, Zou C L, Cui J M, Han Z F and Guo G C 2011 Appl. Phys. Lett. 99 161903 | [9] | Kucsko G, Maurer P C, Yao N Y, Kubo M, Noh H J, Lo P K, Park H and Lukin M D 2013 Nature 500 54 | [10] | Arcizet O, Jacques V, Siria A, Poncharal P, Vincent P and Seidelin S 2011 Nat. Phys. 7 879 | [11] | Doherty M W, Struzhkin V V, Simpson D A, McGuinness L P, Meng Y, Stacey A, Karle T J, Hemley R J, Manson N B, Hollenberg L C L and Prawer S 2014 Phys. Rev. Lett. 112 047601 | [12] | Cui J M, Sun F W, Chen X D, Gong Z J and Guo G C 2013 Phys. Rev. Lett. 110 153901 | [13] | Chen X D, Zou C L, Gong Z J, Dong C H, Guo G C and Sun F W 2015 Light: Sci. Appl. 4 e230 | [14] | Li S, Chen X D, Zhao B W, Dong Y, Zou C W, Guo G C and Sun F W 2016 Appl. Phys. Lett. 109 111107 | [15] | Chen X D, Li S, Shen A, Dong Y, Dong C H, Guo G C and Sun F W 2017 Phys. Rev. Appl. 7 014008 | [16] | Du B, Chen X D and Sun F W 2017 Laser Optoelectron. Prog. 54 030003 (in Chinese) | [17] | Schirhagl R, Chang K, Loretz M and Degen C L 2014 Annu. Rev. Phys. Chem. 65 83 | [18] | Hall L T, Beart G C G, Thomas E A, Simpson D A, McGuinness L P, Cole J H, Manton J H, Scholten R E, Jelezko F, Wrachtrup J, Petrou S and Hollenberg L C L 2012 Sci. Rep. 2 401 | [19] | Schaefer-Nolte E, Reinhard F, Ternes M, Wrachtrup J and Kern K 2014 Rev. Sci. Instrum. 85 013701 | [20] | Yeung T K, Le Sage D, Pham L M, Stanwix P L and Walsworth R L 2012 Appl. Phys. Lett. 100 251111 | [21] | Hadden J P, Harrison J P, Stanley-Clarke A C, Marseglia L, Ho Y L D, Patton B R, O'Brien J L and Rarity J G 2010 Appl. Phys. Lett. 97 241901 | [22] | Le Sage D, Pham L M, Bar-Gill N, Belthangady C, Lukin M D, Yacoby A and Walsworth R L 2012 Phys. Rev. B 85 121202 | [23] | Faraon A, Santori C, Huang Z, Acosta V M and Beausoleil R G 2012 Phys. Rev. Lett. 109 033604 | [24] | Furuyama S, Tahara K, Iwasaki T, Shimizu M, Yaita J, Kondo M, Kodera T and Hatano M 2015 Appl. Phys. Lett. 107 163102 | [25] | Li L, Chen E H, Zheng J, Mouradian S L, Dolde F, Schröder T, Karaveli S, Markham M L, Twitchen D J and Englund D 2015 Nano Lett. 15 1493 | [26] | Faraon A, Barclay P E, Santori C, Fu K M C and Beausoleil R G 2011 Nat. Photon. 5 301 | [27] | Khanaliloo B, Mitchell M, Hryciw A C and Barclay P E 2015 Nano Lett. 15 5131 | [28] | Hausmann B J, Khan M, Zhang Y, Babinec T M, Martinick K, McCutcheon M, Hemmer P R and Lončar M 2010 Diamond Relat. Mater. 19 621 | [29] | Cui J M, Chen X D, Fan L L, Gong Z J, Zou C W, Sun F W, Han Z F and Guo G C 2012 Chin. Phys. Lett. 29 036103 | [30] | Gong Z J, Chen X D, Li C C, Li S, Zhao B W and Sun F W 2016 Chin. Phys. Lett. 33 026105 | [31] | Berthel M, Mollet O, Dantelle G, Gacoin T, Huant S and Drezet A 2015 Phys. Rev. B 91 035308 | [32] | Bradac C, Gaebel T, Naidoo N, Sellars M J, Twamley J, Brown L J, Barnard A S, Plakhotnik T, Zvyagin A V and Rabeau J R 2010 Nat. Nanotechnol. 5 345 | [33] | Alegre T P M, Santori C, Medeiros-Ribeiro G and Beausoleil R G 2007 Phys. Rev. B 76 165205 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|