Chin. Phys. Lett.  2017, Vol. 34 Issue (9): 096101    DOI: 10.1088/0256-307X/34/9/096101
CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
A Bright Single-Photon Source from Nitrogen-Vacancy Centers in Diamond Nanowires
Shen Li1,2, Cui-Hong Li1,3,4, Bo-Wen Zhao1,2, Yang Dong1,2, Cong-Cong Li1,2, Xiang-Dong Chen1,2, Ya-Song Ge3,4, Fang-Wen Sun1,2**
1Key Lab of Quantum Information, Chinese Academy of Sciences, University of Science and Technology of China, Hefei 230026
2Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026
3Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029
4University of Chinese Academy of Sciences, Beijing 100049
Cite this article:   
Shen Li, Cui-Hong Li, Bo-Wen Zhao et al  2017 Chin. Phys. Lett. 34 096101
Download: PDF(918KB)   PDF(mobile)(910KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Single-photon flux is one of the crucial properties of nitrogen vacancy (NV) centers in diamond for its application in quantum information techniques. Here we fabricate diamond conical nanowires to enhance the single-photon count rate. Through the interaction between tightly confined optical mode in nanowires and NV centers, the single-photon lifetime is much shortened and the collection efficiency is enhanced. As a result, the detected single-photon rate can be at 564 kcps, and the total detection coefficient can be 0.8%, which is much higher than that in bulk diamond. Such a nanowire single-photon device with high photon flux can be applied to improve the fidelity of quantum computation and the precision of quantum sensors.
Received: 30 March 2017      Published: 15 August 2017
PACS:  61.72.-y (Defects and impurities in crystals; microstructure)  
  42.50.Dv (Quantum state engineering and measurements)  
Fund: Supported by the National Key Research and Development Program of China under Grant No 2017YFA0304504, and the National Natural Science Foundation of China under Grant Nos 11374290, 61522508, 91536219 and 11504363.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/34/9/096101       OR      https://cpl.iphy.ac.cn/Y2017/V34/I9/096101
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Shen Li
Cui-Hong Li
Bo-Wen Zhao
Yang Dong
Cong-Cong Li
Xiang-Dong Chen
Ya-Song Ge
Fang-Wen Sun
[1]Kurtsiefer C, Mayer S, Zarda P and Weinfurter H 2000 Phys. Rev. Lett. 85 290
[2]Babinec T M, Hausmann B J M, Khan M, Zhang Y, Maze J R, Hemmer P R and Lončar M 2010 Nat. Nanotechnol. 5 195
[3]Aharonovich I, Castelletto S, Simpson D A, Su C H, Greentree A D and Prawer S 2011 Rep. Prog. Phys. 74 076501
[4]Mizuochi N, Makino T, Kato H, Takeuchi D, Ogura M, Okushi H, Nothaft M, Neumann P, Gali A, Jelezko F, Wrachtrup J and Yamasaki S 2012 Nat. Photon. 6 299
[5]Waldherr G, Wang Y, Zaiser S, Jamali M, Schulte-Herbrüggen T, Abe H, Ohshima T, Isoya J, Du J F, Neumann P and Wrachtrup J 2014 Nature 506 204
[6]Maze J R, Stanwix P L, Hodges J S, Hong S, Taylor J M, Cappellaro P, Jiang L, Dutt M V G, Togan E, Zibrov A S, Yacoby A, Walsworth R L and Lukin M D 2008 Nature 455 644
[7]Rondin L, Tetienne J P, Hingant T, Roch J F, Maletinsky P and Jacques V 2014 Rep. Prog. Phys. 77 056503
[8]Chen X D, Dong C H, Sun F W, Zou C L, Cui J M, Han Z F and Guo G C 2011 Appl. Phys. Lett. 99 161903
[9]Kucsko G, Maurer P C, Yao N Y, Kubo M, Noh H J, Lo P K, Park H and Lukin M D 2013 Nature 500 54
[10]Arcizet O, Jacques V, Siria A, Poncharal P, Vincent P and Seidelin S 2011 Nat. Phys. 7 879
[11]Doherty M W, Struzhkin V V, Simpson D A, McGuinness L P, Meng Y, Stacey A, Karle T J, Hemley R J, Manson N B, Hollenberg L C L and Prawer S 2014 Phys. Rev. Lett. 112 047601
[12]Cui J M, Sun F W, Chen X D, Gong Z J and Guo G C 2013 Phys. Rev. Lett. 110 153901
[13]Chen X D, Zou C L, Gong Z J, Dong C H, Guo G C and Sun F W 2015 Light: Sci. Appl. 4 e230
[14]Li S, Chen X D, Zhao B W, Dong Y, Zou C W, Guo G C and Sun F W 2016 Appl. Phys. Lett. 109 111107
[15]Chen X D, Li S, Shen A, Dong Y, Dong C H, Guo G C and Sun F W 2017 Phys. Rev. Appl. 7 014008
[16]Du B, Chen X D and Sun F W 2017 Laser Optoelectron. Prog. 54 030003 (in Chinese)
[17]Schirhagl R, Chang K, Loretz M and Degen C L 2014 Annu. Rev. Phys. Chem. 65 83
[18]Hall L T, Beart G C G, Thomas E A, Simpson D A, McGuinness L P, Cole J H, Manton J H, Scholten R E, Jelezko F, Wrachtrup J, Petrou S and Hollenberg L C L 2012 Sci. Rep. 2 401
[19]Schaefer-Nolte E, Reinhard F, Ternes M, Wrachtrup J and Kern K 2014 Rev. Sci. Instrum. 85 013701
[20]Yeung T K, Le Sage D, Pham L M, Stanwix P L and Walsworth R L 2012 Appl. Phys. Lett. 100 251111
[21]Hadden J P, Harrison J P, Stanley-Clarke A C, Marseglia L, Ho Y L D, Patton B R, O'Brien J L and Rarity J G 2010 Appl. Phys. Lett. 97 241901
[22]Le Sage D, Pham L M, Bar-Gill N, Belthangady C, Lukin M D, Yacoby A and Walsworth R L 2012 Phys. Rev. B 85 121202
[23]Faraon A, Santori C, Huang Z, Acosta V M and Beausoleil R G 2012 Phys. Rev. Lett. 109 033604
[24]Furuyama S, Tahara K, Iwasaki T, Shimizu M, Yaita J, Kondo M, Kodera T and Hatano M 2015 Appl. Phys. Lett. 107 163102
[25]Li L, Chen E H, Zheng J, Mouradian S L, Dolde F, Schröder T, Karaveli S, Markham M L, Twitchen D J and Englund D 2015 Nano Lett. 15 1493
[26]Faraon A, Barclay P E, Santori C, Fu K M C and Beausoleil R G 2011 Nat. Photon. 5 301
[27]Khanaliloo B, Mitchell M, Hryciw A C and Barclay P E 2015 Nano Lett. 15 5131
[28]Hausmann B J, Khan M, Zhang Y, Babinec T M, Martinick K, McCutcheon M, Hemmer P R and Lončar M 2010 Diamond Relat. Mater. 19 621
[29]Cui J M, Chen X D, Fan L L, Gong Z J, Zou C W, Sun F W, Han Z F and Guo G C 2012 Chin. Phys. Lett. 29 036103
[30]Gong Z J, Chen X D, Li C C, Li S, Zhao B W and Sun F W 2016 Chin. Phys. Lett. 33 026105
[31]Berthel M, Mollet O, Dantelle G, Gacoin T, Huant S and Drezet A 2015 Phys. Rev. B 91 035308
[32]Bradac C, Gaebel T, Naidoo N, Sellars M J, Twamley J, Brown L J, Barnard A S, Plakhotnik T, Zvyagin A V and Rabeau J R 2010 Nat. Nanotechnol. 5 345
[33]Alegre T P M, Santori C, Medeiros-Ribeiro G and Beausoleil R G 2007 Phys. Rev. B 76 165205
Related articles from Frontiers Journals
[1] Ziwen Chen, Yulong Li, Rui Zhu, Jun Xu, Tiequan Xu, Dali Yin, Xinwei Cai, Yue Wang, Jianming Lu, Yan Zhang, and Ping Ma. High-Temperature Superconducting YBa$_{2}$Cu$_{3}$O$_{7-\delta}$ Josephson Junction Fabricated with a Focused Helium Ion Beam[J]. Chin. Phys. Lett., 2022, 39(7): 096101
[2] Xiaowei Wu, Chen Ming, Jing Shi, Han Wang, Damien West, Shengbai Zhang, and Yi-Yang Sun. Defects in Statically Unstable Solids: The Case for Cubic Perovskite $\alpha$-CsPbI$_3$[J]. Chin. Phys. Lett., 2022, 39(4): 096101
[3] Xiaoyan Sun, Huaguang Wang, Hao Feng, Zexin Zhang, and Yuqiang Ma. Observation of the Pinning-Induced Crystal-Hexatic-Glass Transition in Two-Dimensional Colloidal Suspensions[J]. Chin. Phys. Lett., 2021, 38(10): 096101
[4] Chen Qiu, Ruyue Cao, Cai-Xin Zhang, Chen Zhang, Dan Guo, Tao Shen, Zhu-You Liu, Yu-Ying Hu, Fei Wang, and Hui-Xiong Deng. First-Principles Study of Intrinsic Point Defects of Monolayer GeS[J]. Chin. Phys. Lett., 2021, 38(2): 096101
[5] Yequan Chen, Ruxin Liu, Yongda Chen, Xiao Yuan, Jiai Ning, Chunchen Zhang, Liming Chen, Peng Wang, Liang He, Rong Zhang, Yongbing Xu, and Xuefeng Wang. Large-Area Freestanding Weyl Semimetal WTe$_{2}$ Membranes[J]. Chin. Phys. Lett., 2021, 38(1): 096101
[6] Xiao-Yu Zhao, Jun-Hui Huang, Zhi-Yao Zhuo, Yong-Zhou Xue, Kun Ding, Xiu-Ming Dou, Jian Liu, Bao-Quan Sun. Optical Properties of Atomic Defects in Hexagonal Boron Nitride Flakes under High Pressure[J]. Chin. Phys. Lett., 2020, 37(4): 096101
[7] Yan-Bin Sheng, Hong-Peng Zhang, Tie-Long Shen, Kong-Fang Wei, Long Kang, Rui Liu, Tong-Min Zhang, Bing-Sheng Li. Atomic Mixing Induced by Ion Irradiation of V/Cu Multilayers[J]. Chin. Phys. Lett., 2020, 37(3): 096101
[8] Yi Wang, Wensheng Lai, Jiahao Li. An Incremental Model for Defect Production upon Cascade Overlapping[J]. Chin. Phys. Lett., 2020, 37(1): 096101
[9] Hong-Yu Yu, Nan Gao, Hong-Dong Li, Xu-Ri Huang, Tian Cui. Comparative Study of Substitutional N and Substitutional P in Diamond[J]. Chin. Phys. Lett., 2019, 36(11): 096101
[10] Baoan Liu, Suye Yu, Xiangcao Li, Xin Ju. Electronic Structure and Optical Property Calculation of an Oxygen Vacancy in NH$_{4}$H$_{2}$PO$_{4}$ Crystals[J]. Chin. Phys. Lett., 2019, 36(3): 096101
[11] Li Guan, Guang-Ming Shen, Hao-Tian Ma, Guo-Qi Jia, Feng-Xue Tan, Ya-Nan Liang, Zhi-Ren Wei. Different Thermal Stabilities of Cation Point Defects in LaAlO$_{3}$ Bulk and Films[J]. Chin. Phys. Lett., 2018, 35(9): 096101
[12] Ying-Xi Niu, Xiao-Yan Tang, Ren-Xu Jia, Ling Sang, Ji-Chao Hu, Fei Yang, Jun-Min Wu, Yan Pan, Yu-Ming Zhang. Influence of Triangle Structure Defect on the Carrier Lifetime of the 4H-SiC Ultra-Thick Epilayer[J]. Chin. Phys. Lett., 2018, 35(7): 096101
[13] Xiao-Meng Zhao, Yang Zhang, Li-Jie Cui, Min Guan, Bao-Qiang Wang, Zhan-Ping Zhu, Yi-Ping Zeng. Growth and Characterization of InSb Thin Films on GaAs (001) without Any Buffer Layers by MBE[J]. Chin. Phys. Lett., 2017, 34(7): 096101
[14] Yan-Xia Ye, Xiu-Ming Dou, Kun Ding, Fu-Hua Yang, De-Sheng Jiang, Bao-Quan Sun. Fluorescence Intermittency in Monolayer WSe$_{2}$[J]. Chin. Phys. Lett., 2017, 34(7): 096101
[15] Li Guan, Feng-Xue Tan, Guo-Qi Jia, Guang-Ming Shen, Bao-Ting Liu, Xu Li. Contribution of Surface Defects to the Interface Conductivity of SrTiO$_{3}$/LaAlO$_{3}$[J]. Chin. Phys. Lett., 2016, 33(08): 096101
Viewed
Full text


Abstract