Chin. Phys. Lett.  2017, Vol. 34 Issue (9): 092101    DOI: 10.1088/0256-307X/34/9/092101
NUCLEAR PHYSICS |
Collective Flows of $^{16}$O+$^{16}$O Collisions with $\alpha$-Clustering Configurations
Chen-Chen Guo1, Wan-Bing He2, Yu-Gang Ma1,3,4**
1Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800
2Institute of Modern Physics, Fudan University, Shanghai 200433
3University of Chinese Academy of Sciences, Beijing 100049
4School of Physical Science and Technology, ShanghaiTech University, Shanghai 200031
Cite this article:   
Chen-Chen Guo, Wan-Bing He, Yu-Gang Ma 2017 Chin. Phys. Lett. 34 092101
Download: PDF(755KB)   PDF(mobile)(737KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The main purpose of the present work is to discuss whether or not the collective flows in heavy-ion collision at the Fermi energy can be taken as a tool to investigate the cluster configuration in light nuclei. In practice, within an extended quantum molecular dynamics model, four $\alpha$-clustering (linear chain, kite, square and tetrahedron) configurations of $^{16}$O are employed in the initialization, $^{16}$O+$^{16}$O around the Fermi energy (40–60 MeV/nucleon) with impact parameter 1–3 fm are simulated, and the directed and elliptic flows are analyzed. It is found that collective flows are influenced by the different $\alpha$-clustering configurations, and the directed flow of free protons is more sensitive to the initial cluster configuration than the elliptic flow. Nuclear reaction at the Fermi energy can be taken as a useful way to study cluster configuration in light nuclei.
Received: 09 June 2017      Published: 15 August 2017
PACS:  21.65.Cd (Asymmetric matter, neutron matter)  
  21.65.Mn (Equations of state of nuclear matter)  
  25.70.-z (Low and intermediate energy heavy-ion reactions)  
Fund: Supported by the National Natural Science Foundation of China under Grant Nos 11421505, 11220101005, 11305239 and 11605270, the Major State Basic Research Development Program of China under Grant No 2014CB845401, the Key Research Program of Frontier Sciences of the Chinese Academy of Sciences under Grant No QYZDJ-SSW-SLH002, and the China Postdoctoral Science Foundation under Grant No 2016M591730.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/34/9/092101       OR      https://cpl.iphy.ac.cn/Y2017/V34/I9/092101
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Chen-Chen Guo
Wan-Bing He
Yu-Gang Ma
[1]Oertzen W, Freer M and Kanada-Eno Y 2006 Phys. Rep. 432 43
[2]Freer M 2007 Rep. Prog. Phys. 70 2149
[3]Cao X G and Ma Y G 2015 Chin. Sci. Bull. 60 1557
[4]Epelbaum E, Krebs H, Lee D and Meissner U G 2011 Phys. Rev. Lett. 106 192501
[5]Epelbaum E, Krebs H, Lahde T A, Lee D and Meissner U G 2012 Phys. Rev. Lett. 109 252501
[6]Feldmeier H 1990 Nucl. Phys. A 515 147
[7]Chernykh M, Feldmeier H, Neff T, Neumann-Cosel P and Richter A 2007 Phys. Rev. Lett. 98 032501
[8]Kanada-En'yo Y, Kimura M and Ono A 2012 Prog. Theor. Exp. Phys. 2012 01A202
[9]Kanada-En'yo Y et al 2015 Nucl. Sci. Tech. 26 S20501
[10]Ma C W et al 2016 Nucl. Sci. Tech. 27 111
[11]Ma C W et al 2015 Chin. Phys. Lett. 32 072501
[12]He W B, Ma Y G, Cao X G, Cai X Z and Zhang G Q 2014 Phys. Rev. Lett. 113 032506
[13]He W B, Ma Y G and Zhang Q G 2016 Phys. Rev. C 94 014301
[14]Huang B S, Ma Y G and He W B 2017 Phys. Rev. C 95 034606
Huang B S, Ma Y G and He W B 2017 Eur. Phys. J. A 53 119
[15]He W B, Ma Y G, Cao X G et al 2014 Nucl. Tech. 37 100511 (in Chinese)
[16]Wang S S, Cao X G, Zhang T L et al 2015 Nucl. Phys. Rev. 32 24
[17]Halcrow C J, King C and Manton N S 2017 Phys. Rev. C 95 031303
[18]Bijker R 2010 AIP Conf. Proc. 1323 28
[19]Zhou E F, Yao J M, Li Z P, Meng J and Ring P 2016 Phys. Lett. B 753 227
[20]Ichikawa T, Maruhn J A, Itagaki N and Ohkubo S 2011 Phys. Rev. Lett. 107 112501
[21]Suhara T, Funaki Y, Zhou B, Horiuchi H and Tohsaki A 2014 Phys. Rev. Lett. 112 062501
[22]Bijker R and Iachello F 2014 Phys. Rev. Lett. 112 152501
[23]Epelbaum E et al 2014 Phys. Rev. Lett. 112 102501
[24]Tian Z Y, Ye Y L, Li Z H et al 2016 Chin. Phys. C 40 111001
[25]Broniowski W and Arriola W R 2014 Phys. Rev. Lett. 112 112501
[26]Zhang S, Ma Y G, Chen J H et al 2017 Phys. Rev. C 95 064904
[27]Bozek P, Broniowski W, Ruiz A E and Rybczynski M 2014 Phys. Rev. C 90 064902
[28]Reisdorf W and Ritter H G 1997 Annu. Rev. Nucl. Part. Sci. 47 663
[29]Stoecker H 2005 Nucl. Phys. A 750 121
[30]Kumar S and Ma Y G 2013 Nucl. Sci. Tech. 24 050509
[31]Ko C M, Chen L W, Vincenzo G et al 2013 Nucl. Sci. Tech. 24 050525
[32]Ma Y G et al 1993 Phys. Rev. C 48 R1492
Ma Y G et al 1995 Phys. Rev. C 51 1029
[33]Yan T Z, Ma Y G, Cai X Z et al 2006 Phys. Lett. B 638 50
[34]Chen J H, Ma Y G, Ma G L et al 2006 Phys. Rev. C 74 064902
[35]Han L X, Ma G L, Ma Y G et al 2011 Phys. Rev. C 84 064907
[36]Xie W J and Feng Z Q 2015 Chin. Phys. Lett. 32 122502
[37]Zhang F 2016 Chin. Phys. Lett. 33 012501
[38]Zhou C L, Ma Y G, Fang D Q et al 2014 Phys. Rev. C 90 057601
[39]Song H C, Zhou Y and Gajdoov K 2017 Nucl. Sci. Tech. 28 99
[40]Xu Z Y et al 2017 Chin. Phys. Lett. 34 062501
[41]Wang T T et al 2015 Chin. Phys. Lett. 32 062501
[42]Aichelin J 1991 Phys. Rep. 202 233
[43]Maruyama T, Niita K and Iwamoto A 1996 Phys. Rev. C 53 297
[44]Ono A and Horiuchi H 2004 Prog. Part. Nucl. Phys. 53 501
[45]Huang B S and Ma Y G 2017 Chin. Phys. Lett. 34 072401
[46]Wu H L et al 2015 Nucl. Sci. Tech. 26 050103
[47]Andronic A, Lukasik J, Reisdorf W et al 2006 Eur. Phys. J. A 30 31
[48]Li Q F, Shen C W, Guo C C et al 2011 Phys. Rev. C 83 044617
Related articles from Frontiers Journals
[1] Jian-Min Dong, Wei Zuo, Jian-Zhong Gu. First-Order Symmetry Energy Induced by Neutron–Proton Mass Difference[J]. Chin. Phys. Lett., 2016, 33(10): 092101
[2] Fang Zhang. Effects of the HMT on Nucleon Collective Flows within BUU Transport Model[J]. Chin. Phys. Lett., 2016, 33(01): 092101
[3] MA Chun-Wang, WANG Shan-Shan, WEI Hui-Ling, MA Yu-Gang. Re-examination of Finite-Size Effects in Isobaric Yield Ratios Using a Statistical Abrasion-Ablation Model[J]. Chin. Phys. Lett., 2013, 30(5): 092101
[4] XU Chang, REN Zhong-Zhou. Effect of Short-Range and Tensor Force Correlations on High-Density Behavior of Symmetry Energy[J]. Chin. Phys. Lett., 2012, 29(12): 092101
[5] MA Chun-Wang, YANG Ju-Bao, YU Mian, PU Jie, WANG Shan-Shan, WEI Hui-Ling. Surface and Volume Symmetry Energy Coefficients of a Neutron-Rich Nucleus[J]. Chin. Phys. Lett., 2012, 29(9): 092101
[6] MA Chun-Wang, PU Jie, WANG Shan-Shan, WEI Hui-Ling. The Symmetry Energy from the Neutron-Rich Nucleus Produced in the Intermediate-Energy 40,48Ca and 58,64Ni Projectile Fragmentation[J]. Chin. Phys. Lett., 2012, 29(6): 092101
[7] LI Zeng-Hua, ZUO Wei. Symmetry Potential and Effective Mass with Consistent Three-Body Force[J]. Chin. Phys. Lett., 2012, 29(6): 092101
[8] GAN Sheng-Xin,ZUO Wei**,U. Lombardo. Nucleon Effective Mass in Asymmetric Nuclear Matter within Extended Brueckner Approach[J]. Chin. Phys. Lett., 2012, 29(4): 092101
[9] LI Zeng-Hua, **, ZUO Wei, GUO Wen-Jun. Single-Particle Properties of Isospin Asymmetric Nuclear Matter[J]. Chin. Phys. Lett., 2012, 29(1): 092101
Viewed
Full text


Abstract