GENERAL |
|
|
|
|
Terahertz Direct Detectors Based on Superconducting Hot Electron Bolometers with Microwave Biasing |
Shou-Lu Jiang1, Xian-Feng Li1, Run-Feng Su1, Xiao-Qing Jia1,2, Xue-Cou Tu1, Lin Kang1,2, Biao-Bing Jin1, Wei-Wei Xu1,2, Jian Chen1**, Pei-Heng Wu1,2 |
1Research Institute of Superconductor Electronics (RISE), School of Electronic Science and Engineering, Nanjing University, Nanjing 210023 2Synergetic Innovation Center in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026
|
|
Cite this article: |
Shou-Lu Jiang, Xian-Feng Li, Run-Feng Su et al 2017 Chin. Phys. Lett. 34 090701 |
|
|
Abstract Terahertz (THz) direct detectors based on superconducting niobium nitride (NbN) hot electron bolometers (HEBs) with microwave (MW) biasing are studied. The MW is used to bias the HEB to the optimum point and to readout the impedance changes caused by the incident THz signals. Compared with the thermal biasing method, this method would be more promising in large scale array with simple readout. The used NbN HEB has an excellent performance as heterodyne detector with the double sideband noise temperature ($T_{\rm N}$) of 403 K working at 4.2 K and 0.65 THz. As a result, the noise equivalent power of 1.5 pW/Hz$^{1/2 }$ and the response time of 64 ps are obtained for the direct detectors based on the NbN HEBs and working at 4.2 K and 0.65 THz.
|
|
Received: 12 June 2017
Published: 15 August 2017
|
|
PACS: |
07.57.Kp
|
(Bolometers; infrared, submillimeter wave, microwave, and radiowave receivers and detectors)
|
|
85.25.Pb
|
(Superconducting infrared, submillimeter and millimeter wave detectors)
|
|
85.25.Pb
|
(Superconducting infrared, submillimeter and millimeter wave detectors)
|
|
95.85.Fm
|
(Submillimeter (300 μm-1 mm))
|
|
|
Fund: Supported by the National Basic Research Program of China under Grant No 2014CB339800, the National Natural Science Foundation of China under Grant Nos 61521001, 11173015 and 11227904, the Fundamental Research Funds for the Central Universities, and the Key Laboratory of Advanced Techniques for Manipulating Electromagnetic Waves of Jiangsu Province. |
|
|
[1] | Meledin D V, Marrone D P, Tong C Y E et al 2004 IEEE Trans. Microwave Theory Tech. 52 2338 | [2] | Meledin D, Pavolotsky A, Desmaris V et al 2009 IEEE Trans. Microwave Theory Tech. 57 89 | [3] | Putz P, Honingh C E, Jacobs K et al 2012 Astron. Astrophys. 542 L2 | [4] | Liang M, Chen J, Kang L et al 2010 IEICE Trans. Electron. E93-C 473 | [5] | Buchel D, Putz P, Jacobs K et al 2015 IEEE Trans. Terahertz Sci. Technol. 5 207 | [6] | Kroug M, Cherednichenko S, Merkel H et al 2001 IEEE Trans. Appl. Supercond. 11 962 | [7] | Lobanov Y, Tong C E, Hedden A et al 2010 Proc. 21st Int. Symp. Space THz Tech. pp 420–423 | [8] | Lee A T, Richards P L, Nam S W et al 1996 Appl. Phys. Lett. 69 1801 | [9] | Mazin B A, Day P K, Irwin K D et al 2006 Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. 559 799 | [10] | Chen J, Jiang Y, Liang M et al 2011 IEEE Trans. Appl. Supercond. 21 667 | [11] | Jiang Y, Jin B B, Xu W W et al 2012 Sci. Chin. Inf. Sci. 55 64 | [12] | Jiang S L, Li X F, Jia X Q et al 2017 Supercond. Sci. Technol. 30 044004 | [13] | Jiang Y, Liang M, Jin B B et al 2012 Chin. Sci. Bull. 57 573 | [14] | Li C, Zhang C H, Hu G L et al 2016 Appl. Phys. Lett. 109 022601 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|