Chin. Phys. Lett.  2017, Vol. 34 Issue (8): 084701    DOI: 10.1088/0256-307X/34/8/084701
Rear-Surface Deformation of a Water Drop in Aero-Breakup of Shear Mode
Xiang-Yu Yi1, Yu-Jian Zhu1**, Ji-Ming Yang1**, Tun Wang1, Ming-Yu Sun2
1Department of Modern Mechanics, University of Science and Technology of China, Hefei 230027
2Institute of Fluid Science, Tohoku University, Sendai 980-8577, Japan
Cite this article:   
Xiang-Yu Yi, Yu-Jian Zhu, Ji-Ming Yang et al  2017 Chin. Phys. Lett. 34 084701
Download: PDF(1990KB)   PDF(mobile)(1990KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Deformation of water drops in shock-induced high-speed flows is investigated with a focus to the influence of primitive flow parameters on the rear-surface deformation features. Two typical deformation patterns are discovered through high-speed photography. A simple equation to evaluate the radial acceleration of the drop surface is derived. The combined use of this equation and outer flow simulation makes it possible for us to reconstruct the profiles of the early deformed drops. The results agree well with the experiments. Further analysis shows that the duration of flow establishment with respect to the overall breakup time shapes the rear side profile of the drop. Thereby the ratio of the two times, expressed as the square root of the density ratio, appears to be an effective indicator of the deformation features.
Received: 10 May 2017      Published: 22 July 2017
PACS:  47.55.Ca (Gas/liquid flows)  
  47.55.df (Breakup and coalescence)  
Fund: Supported by the National Natural Science Foundation of China under Grant Nos 11102204, 11572313 and 11621202, and the Natural Science Foundation of Anhui Province under Grant No 1608085MA16.
URL:       OR
E-mail this article
E-mail Alert
Articles by authors
Xiang-Yu Yi
Yu-Jian Zhu
Ji-Ming Yang
Tun Wang
Ming-Yu Sun
[1]Wu L Y, Wang Z G, Li Q L and Li C 2016 Acta Phys. Sin. 9 65 (in Chinese)
[2]Pilch M and Erdman C A 1987 Int. J. Multiphase Flow 13 741
[3]Hsiang L P and Feath G M 1992 Int. J. Muhiphase Flow 18 635
[4]Guildenbecher D, López-Rivera C and Sojka P E 2009 Exp. Fluids 46 371
[5]Theofanous T G 2011 Annu. Rev. Fluid Mech. 43 661
[6]Theofanous T G, Mitkin V V, Ng C L, Chang C H, Deng X and Sushchikh S 2012 Phys. Fluids 24 022104
[7]Li Z G, Liu Q S, Liu R, Hu W and Deng X Y 2009 Chin. Phys. Lett. 26 114701
[8]Wierzba A and Takayama K 1988 AIAA J. 26 1329
[9]Joseph D D, Belanger J and Beavers G S 1999 Int. J. Multiphase Flow 25 1263
[10]Theofanous T G, Li G J, Dinh T N and Chang C H 2007 J. Fluid Mech. 593 131
[11]Sun M Y, Saito T, Takayama K and Tanno H 2005 Shock Waves 14 3
[12]Burgers J M 1958 J. Res. Natl. Bur. Stand. 60 137
[13]Reinecke W G and Waldman G D 1970 AVCO Systems Division Report
[14]Kalita J C and Sen S 2013 J. Fluid Mech. 730 19
[15]Liu Y, Guan B, Wen C Y and Shen H 2017 21st AIAA International Space Planes and Hypersonics Technologies Conference (Xiamen, China 6–9 March 2017) p 2369
Related articles from Frontiers Journals
[1] Guo-Feng Xu, Qiu-Sheng Liu, Jun Qin, Zhi-Qiang Zhu. Instability in Two-Sided Thermocapillary-Buoyancy Convection with Interfacial Phase Change[J]. Chin. Phys. Lett., 2020, 37(1): 084701
[2] Ting Chen, Yu-Ning Zhang, Xiao-Ze Du. Determination of the Minimum Wave Speed for the Modelling of Ventilated Cavitation[J]. Chin. Phys. Lett., 2016, 33(11): 084701
[3] HAO Qing-Yang, JIN Ning-De, HAN Yun-Feng, GAO Zhong-Ke, ZHAI Lu-Sheng. Multi-Scale Time Asymmetry for Detecting the Breakage of Slug Flow Structure[J]. Chin. Phys. Lett., 2014, 31(12): 084701
[4] LIANG Ru-Quan, Kawaji Masahiro. Surface Oscillation and Flow Structure of a Liquid Bridge under Small Vibration[J]. Chin. Phys. Lett., 2014, 31(04): 084701
[5] FAN Chun-Ling, JIN Ning-De, CHEN Xiu-Ting, GAO Zhong-Ke. Multi-Scale Permutation Entropy: A Complexity Measure for Discriminating Two-Phase Flow Dynamics[J]. Chin. Phys. Lett., 2013, 30(9): 084701
[6] ZHANG Xin-Wang, JIN Ning-De, GAO Zhong-Ke, ZHAI Lu-Sheng . Local Property of Recurrence Network for Investigating Gas-Liquid Two-Phase Flow Characteristics[J]. Chin. Phys. Lett., 2013, 30(5): 084701
[7] SONG Hong-Qing, YU Ming-Xu, ZHU Wei-Yao, ZHANG Yu, JIANG Shan-Xue. Dynamic Characteristics of Gas Transport in Nanoporous Media[J]. Chin. Phys. Lett., 2013, 30(1): 084701
[8] JI Bin, LUO Xian-Wu, WU Yu-Lin, XU Hong-Yuan. Unsteady Cavitating Flow around a Hydrofoil Simulated Using the Partially-Averaged Navier–Stokes Model[J]. Chin. Phys. Lett., 2012, 29(7): 084701
[9] Hagar Alm El-Din, ZHANG Yu-Sheng, Medhat Elkelawy. A Computational Study of Cavitation Model Validity Using a New Quantitative Criterion[J]. Chin. Phys. Lett., 2012, 29(6): 084701
[10] TAN Lei, CAO Shu-Liang**, WANG Yu-Ming, ZHU Bao-Shan. Numerical Simulation of Cavitation in a Centrifugal Pump at Low Flow Rate[J]. Chin. Phys. Lett., 2012, 29(1): 084701
[11] LUO Xian-Wu**, JI Bin, ZHANG Yao, XU Hong-Yuan. Cavitating Flow over a Mini Hydrofoil[J]. Chin. Phys. Lett., 2012, 29(1): 084701
[12] HUANG Biao, WANG Guo-Yu** . Evaluation of a Filter-Based Model for Computations of Cavitating Flows[J]. Chin. Phys. Lett., 2011, 28(2): 084701
[13] JI Bin, LUO Xian-Wu, ZHANG Yao, RAN Hong-Juan, XU Hong-Yuan, WU Yu-Lin. A Three-Component Model Suitable for Natural and Ventilated Cavitation[J]. Chin. Phys. Lett., 2010, 27(9): 084701
[14] ZHANG Yao, LUO Xian-Wu, JI Bin, LIU Shu-Hong, WU Yu-Lin, XU Hong-Yuan. A Thermodynamic Cavitation Model for Cavitating Flow Simulation in a Wide Range of Water Temperatures[J]. Chin. Phys. Lett., 2010, 27(1): 084701
[15] LI Zhang-Guo, LIU Qiu-Sheng, LIU Rong, HU Wei, DENG Xin-Yu. Influence of Rayleigh-Taylor Instability on Liquid Propellant Reorientation in a Low-Gravity Environment[J]. Chin. Phys. Lett., 2009, 26(11): 084701
Full text