Chin. Phys. Lett.  2017, Vol. 34 Issue (7): 077502    DOI: 10.1088/0256-307X/34/7/077502
Gapped Spin-1/2 Spinon Excitations in a New Kagome Quantum Spin Liquid Compound Cu$_3$Zn(OH)$_6$FBr
Zili Feng1†, Zheng Li1,2†, Xin Meng1, Wei Yi1, Yuan Wei1, Jun Zhang3, Yan-Cheng Wang1, Wei Jiang4, Zheng Liu5, Shiyan Li3,6, Feng Liu4, Jianlin Luo1,2,7, Shiliang Li1,2,7, Guo-qing Zheng1,8**, Zi Yang Meng1**, Jia-Wei Mei9,4,10**, Youguo Shi1**
1Institute of Physics, Chinese Academy of Sciences, Beijing 100190
2School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190
3State Key Laboratory of Surface Physics, Department of Physics, and Laboratory of Advanced Materials, Fudan University, Shanghai 200433
4Department of Materials Science and Engineering, University of Utah, Salt Lake City, Utah 84112, USA
5Institute for Advanced Study, Tsinghua University, Beijing 100084
6Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093
7Collaborative Innovation Center of Quantum Matter, Beijing 100190
8Department of Physics, Okayama University, Okayama 700-8530, Japan
9Institute for Quantum Science and Engineering, and Department of Physics, Southern University of Science and Technology, Shenzhen 518055
10Beijing Computational Science Research Center, Beijing 100193
Cite this article:   
Zili Feng, Zheng Li, Xin Meng et al  2017 Chin. Phys. Lett. 34 077502
Download: PDF(3207KB)   PDF(mobile)(1380KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We report a new kagome quantum spin liquid candidate Cu$_3$Zn(OH)$_6$FBr, which does not experience any phase transition down to 50 mK, more than three orders lower than the antiferromagnetic Curie-Weiss temperature ($\sim$200 K). A clear gap opening at low temperature is observed in the uniform spin susceptibility obtained from $^{19}$F nuclear magnetic resonance measurements. We observe the characteristic magnetic field dependence of the gap as expected for fractionalized spin-1/2 spinon excitations. Our experimental results provide firm evidence for spin fractionalization in a topologically ordered spin system, resembling charge fractionalization in the fractional quantum Hall state.
Received: 15 June 2017      Published: 19 June 2017
PACS:  75.10.Kt (Quantum spin liquids, valence bond phases and related phenomena) (Magnetic properties, NMR)  
  05.30.Pr (Fractional statistics systems)  
  75.40.Cx (Static properties (order parameter, static susceptibility, heat capacities, critical exponents, etc.))  
Fund: Supported by the National Key Research and Development Program of China under Grant Nos 2016YFA0300502, 2016YFA0300503, 2016YFA0300604, 2016YF0300300 and 2016YFA0300802, the National Natural Science Foundation of China under Grant Nos 11421092, 11474330, 11574359, 11674406, 11374346 and 11674375, the National Basic Research Program of China (973 Program) under Grant No 2015CB921304, the National Thousand-Young-Talents Program of China, the Strategic Priority Research Program (B) of the Chinese Academy of Sciences under Grant Nos XDB07020000, XDB07020200 and XDB07020300. The work in Utah is supported by DOE-BES under Grant No DE-FG02-04ER46148.
URL:       OR
E-mail this article
E-mail Alert
Articles by authors
Zili Feng
Zheng Li
Xin Meng
Wei Yi
Yuan Wei
Jun Zhang
Yan-Cheng Wang
Wei Jiang
Zheng Liu
Shiyan Li
Feng Liu
Jianlin Luo
Shiliang Li
Guo-qing Zheng
Zi Yang Meng
Jia-Wei Mei
Youguo Shi
[1]Anderson P W 1987 Science 235 1196
[2]Wen X 2004 Quantum Field Theory of Many-Body Systems:From the Origin of Sound to an Origin of Light and Electrons Oxford Graduate Texts (OUP Oxford, 2004)
[3]Kitaev A and Preskill J 2006 Phys. Rev. Lett. 96 110404
[4]Levin M and Wen G 2006 Phys. Rev. Lett. 96 110405
[5]Kitaev A Y 2003 Ann. Phys. (N. Y.) 303 2
[6]Tsui D C, Stormer H L and Gossard A C 1982 Phys. Rev. Lett. 48 1559
[7]Laughlin R B 1983 Phys. Rev. Lett. 50 1395
[8]R de Picciotto, Reznikov M, Heiblum M, Umansky V, Bunin G and Mahalu D 1997 Nature 389 162
[9]Kivelson S A, Rokhsar D S and Sethna J P 1987 Phys. Rev. B 35 8865
[10]Read N and Chakraborty B 1989 Phys. Rev. B 40 7133
[11]Read N and Sachdev S 1991 Phys. Rev. Lett. 66 1773
[12]Wen X G 1991 Phys. Rev. B 44 2664
[13]Lee P A 2008 Science 321 1306
[14]Balents L 2010 Nature 464 199
[15]Norman M R 2016 Rev. Mod. Phys. 88 041002
[16]Shores M P, Nytko E A, Bartlett B M and Nocera D G 2005 J. Am. Chem. Soc. 127 13462
[17]Helton J S, Matan K, Shores M P, Nytko E A, Bartlett B M, Yoshida Y, Takano Y, Suslov A, Qiu Y, Chung H, Nocera D G and Lee Y S 2007 Phys. Rev. Lett. 98 107204
[18]Mendels P, Bert F, M A de Vries, Olariu A, Harrison A, Duc F, Trombe J C, Lord J S, Amato A and Baines C 2007 Phys. Rev. Lett. 98 077204
[19]Zorko A, Nellutla S, J van Tol, Brunel L C, Bert F, Duc F, Trombe C, M A de Vries, Harrison A and Mendels P 2008 Phys. Rev. Lett. 101 026405
[20]Imai T, Nytko E A, Bartlett B M, Shores M P and Nocera D G 2008 Phys. Rev. Lett. 100 077203
[21]M A de Vries, Stewart J R, Deen P P, Piatek J O, Nilsen G J, H M Rønnow and Harrison A 2009 Phys. Rev. Lett. 103 237201
[22]Helton J S, Matan K, Shores M P, Nytko E A, Bartlett B M, Qiu Y, Nocera D G and Lee Y S 2010 Phys. Rev. Lett. 104 147201
[23]Imai T, Fu M, Han T H and Lee Y S 2011 Phys. Rev. B 84 020411
[24]Jeong M, Bert F, Mendels P, Duc F, Trombe J C, M A de Vries and Harrison A 2011 Phys. Rev. Lett. 107 237201
[25]Han T H, Helton J S, Chu S, Nocera D G, Rodriguez-Rivera J A, Broholm C and Lee Y S 2012 Nature 492 406
[26]Han T H, Chu S and Lee Y S 2012 Phys. Rev. Lett. 108 157202
[27]Han T H, Helton J S, Chu S, Prodi A, Singh D K, Mazzoli C, Müller P, Nocera D G and Lee Y S 2011 Phys. Rev. B 83 100402
[28]Olariu A, Mendels P, Bert F, Duc F, Trombe J C, de Vrie M As and Harrison A 2008 Phys. Rev. Lett. 100 087202
[29]Fu M, Imai T, Han T H and Lee Y S 2015 Science 350 655
[30]Elliot P and Cooper M 2010 Mineral. Mag. 74 797
[31]Elliot P, Cooper M and Pring A 2014 Mineral. Mag. 78 1755
[32]Han T H, Singleton J and Schlueter J A 2014 Phys. Rev. Lett. 113 227203
[33]Jeschke H O, Salvat-Pujol F, Gati E, Hoang N H, Wolf B, Lang M, Schlueter J A and Valentí R 2015 Phys. Rev. B 92 094417
[34]Liu Z, Zou X, Mei J W and Liu F 2015 Phys. Rev. B 92 220102
[35]Han T H, Isaacs E D, Schlueter J A and Singleton J 2016 Phys. Rev. B 93 214416
[36]Guterding D, Valentí R and Jeschke H O 2016 Phys. Rev. B 94 125136
[37]Liu Z, Mei J W and Liu F 2015 Phys. Rev. B 92 165101
[38]Rietveld H M 1969 J. Appl. Crystallogr. 2 65
[39]Freedman D E, Han T H, Prodi A, Müller P, Huang Z, Chen S, Webb S M, Lee Y S, McQueen T M and Nocera D G 2010 J. Am. Chem. Soc. 132 16185
[40]Bert F, Nakamae S, Ladieu F, L'Hôte D, Bonville P, Duc F, Trombe C and Mendels P 2007 Phys. Rev. B 76 132411
[41]Vries M A de , Kamenev K V, Kockelmann W A, Sanchez-Benitez J and Harrison A 2008 Phys. Rev. Lett. 100 157205
[42]Han T H, Norman M R, Wen J, Rodriguez-Rivera J A, Helton J S, Broholm C and Lee Y S 2016 Phys. Rev. B 94 060409
[43]Kelly Z A, Gallagher M J and McQueen T M 2016 Phys. Rev. X 6 041007
[44]Supplemental Material contains details on fitting of the Knight shift data, AC susceptibility at different frequencies, etc
[45]Zaletel M P and Vishwanath A 2015 Phys. Rev. Lett. 114 077201
Related articles from Frontiers Journals
[1] J.-J. Wen, Y. S. Lee. The Search for the Quantum Spin Liquid in Kagome Antiferromagnets[J]. Chin. Phys. Lett., 2019, 36(5): 077502
[2] Zili Feng, Wei Yi, Kejia Zhu, Yuan Wei, Shanshan Miao, Jie Ma, Jianlin Luo, Shiliang Li, Zi Yang Meng, Youguo Shi. From Claringbullite to a New Spin Liquid Candidate Cu$_3$Zn(OH)$_6$FCl[J]. Chin. Phys. Lett., 2019, 36(1): 077502
[3] Weiwei Liu, Zheng Zhang, Jianting Ji, Yixuan Liu, Jianshu Li, Xiaoqun Wang, Hechang Lei, Gang Chen, Qingming Zhang. Rare-Earth Chalcogenides: A Large Family of Triangular Lattice Spin Liquid Candidates[J]. Chin. Phys. Lett., 2018, 35(11): 077502
Full text