Chin. Phys. Lett.  2017, Vol. 34 Issue (7): 077501    DOI: 10.1088/0256-307X/34/7/077501
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Weyl and Nodal Ring Magnons in Three-Dimensional Honeycomb Lattices
Kang-Kang Li1,2**, Jiang-Ping Hu1,2,3
1Beijing National Laboratory for Condensed Matter Physics, and Institute of Physics, Chinese Academy of Sciences, Beijing 100190
2School of Physics, University of Chinese Academy of Sciences, Beijing 100049
3Collaborative Innovation Center of Quantum Matter, Beijing 100871
Cite this article:   
Kang-Kang Li, Jiang-Ping Hu 2017 Chin. Phys. Lett. 34 077501
Download: PDF(727KB)   PDF(mobile)(712KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We study the topological properties of magnon excitations in a wide class of three-dimensional (3D) honeycomb lattices with ferromagnetic ground states. It is found that they host nodal ring magnon excitations. These rings locate on the same plane in the momentum space. The nodal ring degeneracy can be lifted by the Dzyaloshinskii–Moriya interactions to form two Weyl points with opposite charges. We explicitly discuss these physics in the simplest 3D honeycomb lattice and the hyperhoneycomb lattice, and show drumhead and arc surface states in the nodal ring and Weyl phases, respectively, due to the bulk-boundary correspondence.
Received: 17 April 2017      Published: 23 June 2017
PACS:  75.30.Ds (Spin waves)  
  75.50.Dd (Nonmetallic ferromagnetic materials)  
  75.70.Rf (Surface magnetism)  
  75.90.+w (Other topics in magnetic properties and materials)  
Fund: Supported by the National Basic Research Program of China under Grant No 2015CB921300, the National Natural Science Foundation of China under Grant No 11334012, and the Strategic Priority Research Program of Chinese Academy of Sciences under Grant No XDB07000000.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/34/7/077501       OR      https://cpl.iphy.ac.cn/Y2017/V34/I7/077501
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Kang-Kang Li
Jiang-Ping Hu
[1]Kane C L and Mele E J 2005 Phys. Rev. Lett. 95 226801
[2]Kane C L and Mele E J 2005 Phys. Rev. Lett. 95 146802
[3]Wang J T et al 2016 Phys. Rev. Lett. 116 195501
[4]Takayama T et al 2015 Phys. Rev. Lett. 114 077202
[5]Biffin A et al 2014 Phys. Rev. B 90 205116
[6]Modic K A et al 2014 Nat. Commun. 5 4203
[7]Lee E K H et al 2014 Phys. Rev. B 89 205132
[8]Lee E K H et al 2014 Phys. Rev. B 89 045117
[9]Mullen K et al 2015 Phys. Rev. Lett. 115 026403
[10]Nasu J et al 2014 Phys. Rev. B 89 115125
[11]Nasu J et al 2015 J. Phys.: Conf. Ser. 592 012115
[12]Kimchi I et al 2014 Phys. Rev. B 90 205126
[13]Lee S B et al 2014 Phys. Rev. B 89 014424
[14]Hermanns M, OBrien K and Trebst S 2015 Phys. Rev. Lett. 114 157202
[15]Robert Schaffer, Lee E K H, Lu Y M and Kim Y B 2015 Phys. Rev. Lett. 114 116803
[16]Mandal S and Surendran N 2009 Phys. Rev. B 79 024426
[17]Phillips M and Aji V 2014 Phys. Rev. B 90 115111
[18]Xie L S, Schoop L M, Seibel E M, Gibson Q D, Xie W and Cava R J 2015 APL Mater. 3 083602
[19]Yu R, Weng H, Fang Z, Dai X and Hu X 2015 Phys. Rev. Lett. 115 036807
[20]Kim Y, Wieder B J, Kane C L and Rappe A M 2015 Phys. Rev. Lett. 115 036806
[21]Yamakage A, Yamakawa Y, Tanaka Y and Okamoto Y 2016 J. Phys. Soc. Jpn. 85 013708
[22]Weng H, Liang Y, Xu Q, Yu R, Fang Z, Dai X and Kawazoe Y 2015 Phys. Rev. B 92 045108
[23]Motohiko E 2016 Phys. Rev. Lett. 116 127202
[24]Roldán-Molina A, Nunez A S and Fernández-Rossier J 2016 New J. Phys. 18 045015
[25]Zhang L F, Ren J, Wang J S and Li B W 2013 Phys. Rev. B 87 144101
[26]Ryuichi S, Ryo M, Shuichi M and Jun-ichiro O 2013 Phys. Rev. B 87 174427
[27]Kim S K, Héctor O, Ricardo Z and Yaroslav T 2016 Phys. Rev. Lett. 117 227201
[28]Owerre S A 2016 J. Phys.: Condens. Matter 28 386001
[29]Owerre S A 2016 Phys. Rev. B 94 094405
[30]Li F Y, Li Y D, Kim Y B, Leon B, Yu Y and Chen G 2016 Nat. Commun. 7 12691
[31]Alexander M, Jürgen H and Ingrid M 2016 Phys. Rev. Lett. 117 157204
[32]Alexander M, Jürgen H and Ingrid M 2017 Phys. Rev. B 95 014418
[33]Li K K, Li C Y, Hu J P, Li Y and Fang C 2017 arXiv:1703.08545
[34]Hatsugai Y 1993 Phys. Rev. B 48 11851
[35]Hatsugai Y 1993 Phys. Rev. Lett. 71 3697
[36]Holstein T and Primakoff H 1940 Phys. Rev. 58 1098
Related articles from Frontiers Journals
[1] Kangkang Li. Topological Magnons in Kitaev Magnets with Finite Dzyaloshinskii–Moriya Interaction at High Field[J]. Chin. Phys. Lett., 2023, 40(2): 077501
[2] Yayuan Qin, Yao Shen, Yiqing Hao, Hongliang Wo, Shoudong Shen, Russell A. Ewings, Yang Zhao, Leland W. Harriger, Jeffrey W. Lynn, and Jun Zhao. Erratum: Frustrated Magnetic Interactions and Quenched Spin Fluctuations in CrAs [Chin. Phys. Lett. 39, 127501 (2022)][J]. Chin. Phys. Lett., 2023, 40(2): 077501
[3] Yayuan Qin, Yao Shen, Yiqing Hao, Hongliang Wo, Shoudong Shen, Russell A. Ewings, Yang Zhao, Leland W. Harriger, Jeffrey W. Lynn, and Jun Zhao. Frustrated Magnetic Interactions and Quenched Spin Fluctuations in CrAs[J]. Chin. Phys. Lett., 2022, 39(12): 077501
[4] Xiaoxue Zhao, Kejing Ran, Jinghui Wang, Song Bao, Yanyan Shangguan, Zhentao Huang, Junbo Liao, Bo Zhang, Shufan Cheng, Hao Xu, Wei Wang, Zhao-Yang Dong, Siqin Meng, Zhilun Lu, Shin-ichiro Yano, Shun-Li Yu, Jian-Xin Li, and Jinsheng Wen. Neutron Spectroscopy Evidence for a Possible Magnetic-Field-Induced Gapless Quantum-Spin-Liquid Phase in a Kitaev Material $\alpha$-RuCl$_3$[J]. Chin. Phys. Lett., 2022, 39(5): 077501
[5] Kejing Ran, Jinghui Wang, Song Bao, Zhengwei Cai, Yanyan Shangguan, Zhen Ma, Wei Wang, Zhao-Yang Dong, P. Čermák, A. Schneidewind, Siqin Meng, Zhilun Lu, Shun-Li Yu, Jian-Xin Li, and Jinsheng Wen. Evidence for Magnetic Fractional Excitations in a Kitaev Quantum-Spin-Liquid Candidate $\alpha$-RuCl$_3$[J]. Chin. Phys. Lett., 2022, 39(2): 077501
[6] Di Wang, Jihai Yu, Feng Tang, Yuan Li, and Xiangang Wan. Determination of the Range of Magnetic Interactions from the Relations between Magnon Eigenvalues at High-Symmetry $k$ Points[J]. Chin. Phys. Lett., 2021, 38(11): 077501
[7] Qiuyang Li, Suqin Xiong, Lina Chen, Kaiyuan Zhou, Rongxin Xiang, Haotian Li, Zhenyu Gao, Ronghua Liu, and Youwei Du. Spin-Wave Dynamics in an Artificial Kagome Spin Ice[J]. Chin. Phys. Lett., 2021, 38(4): 077501
[8] Mao Yang, Xianyang Lu, Bo Liu, Xuezhong Ruan, Junran Zhang, Xiaoqian Zhang, Dawei Huang, Jing Wu, Jun Du, Bo Liu, Hao Meng, Liang He, and Yongbing Xu. Tuning of the Magnetic Damping Parameter by Varying Cr Composition in Fe$_{1-x}$Cr$_x$ Alloy[J]. Chin. Phys. Lett., 2020, 37(10): 077501
[9] Yizhe Sun, Moorthi Kanagaraj, Qinwu Gao, Yafei Zhao, Jiai Ning, Kunpeng Zhang, Xianyang Lu, Liang He, and Yongbing Xu. Site Preference of Se and Te in Bi$_2$Se$_{3-x}$Te$_x$ Thin Films[J]. Chin. Phys. Lett., 2020, 37(7): 077501
[10] Zhong-Chao Wei, Hai-Jun Liao, Jing Chen, Hai-Dong Xie, Zhi-Yuan Liu, Zhi-Yuan Xie, Wei Li, B. Normand, Tao Xiang. Self-Consistent Spin-Wave Analysis of the 1/3 Magnetization Plateau in the Kagome Antiferromagnet[J]. Chin. Phys. Lett., 2016, 33(07): 077501
[11] LI Shu-Fa, HE Pan, CHENG Chu-Yuan, ZHOU Shi-Ming, LAI Tian-Shu. Spin-Wave Modes in Exchange-Coupled FePt/FeNi Bilayer Films[J]. Chin. Phys. Lett., 2014, 31(1): 077501
[12] DONG Zhan-Hai. 120° Ordered Phase of Triangular Lattice Antiferromagnetic Heisenberg Model with Long Range Couplings[J]. Chin. Phys. Lett., 2009, 26(10): 077501
[13] LU Feng, SONG Yun, CHEN Dong-Meng, ZOU Liang-Jian. Orbital Order and Orbital Excitations in Degenerate Itinerant Electron Systems[J]. Chin. Phys. Lett., 2009, 26(9): 077501
[14] WU Bao-Jian, GAO Xiang. Magnetostatic-Wave-Based Magneto-Optic Pulse Compression by Control of Phase Mismatching[J]. Chin. Phys. Lett., 2008, 25(11): 077501
[15] WU Bao-Jian, QIU Kun. Magneto-Optic Coupling Theory for Guided Optical Waves and Magnetostatic Waves Using an Arbitrarily Tilted Bias Magnetic Field[J]. Chin. Phys. Lett., 2005, 22(9): 077501
Viewed
Full text


Abstract