Chin. Phys. Lett.  2017, Vol. 34 Issue (6): 065201    DOI: 10.1088/0256-307X/34/6/065201
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES |
Nonlinear Propagation of Positron-Acoustic Periodic Travelling Waves in a Magnetoplasma with Superthermal Electrons and Positrons
E. F. EL-Shamy1,2**
1Department of Physics, College of Science, King Khalid University, Abha 9004, Kingdom of Saudi Arabia
2Department of Physics, Faculty of Science, Damietta University, New Damietta 34517, Egypt
Cite this article:   
E. F. EL-Shamy 2017 Chin. Phys. Lett. 34 065201
Download: PDF(955KB)   PDF(mobile)(938KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The nonlinear propagation of positron acoustic periodic (PAP) travelling waves in a magnetoplasma composed of dynamic cold positrons, superthermal kappa distributed hot positrons and electrons, and stationary positive ions is examined. The reductive perturbation technique is employed to derive a nonlinear Zakharov–Kuznetsov equation that governs the essential features of nonlinear PAP travelling waves. Moreover, the bifurcation theory is used to investigate the propagation of nonlinear PAP periodic travelling wave solutions. It is found that kappa distributed hot positrons and electrons provide only the possibility of existence of nonlinear compressive PAP travelling waves. It is observed that the superthermality of hot positrons, the concentrations of superthermal electrons and positrons, the positron cyclotron frequency, the direction cosines of wave vector $k$ along the $z$-axis, and the concentration of ions play pivotal roles in the nonlinear propagation of PAP travelling waves. The present investigation may be used to understand the formation of PAP structures in the space and laboratory plasmas with superthermal hot positrons and electrons.
Received: 09 March 2017      Published: 23 May 2017
PACS:  52.27.Ep (Electron-positron plasmas)  
  52.35.Fp (Electrostatic waves and oscillations (e.g., ion-acoustic waves))  
  52.35.Sb (Solitons; BGK modes)  
  52.35.Mw (Nonlinear phenomena: waves, wave propagation, and other interactions (including parametric effects, mode coupling, ponderomotive effects, etc.))  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/34/6/065201       OR      https://cpl.iphy.ac.cn/Y2017/V34/I6/065201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
E. F. EL-Shamy
[1]Michel F C 1982 Rev. Mod. Phys. 54 1
[2]Miller H R and Witta P J 1987 Active Galactic Nuclei (Berlin: Springer)
[3]Berezhiani V I, El-Ashry M Y and Mofiz U A 1994 Phys. Rev. E 50 448
[4]Popel S I, Vladimirov S V and Shukla P K 1995 Phys. Plasmas 2 716
[5]Kakati H and Goswami K S 2000 Phys. Plasmas 7 808
[6]Mahmood S, Mushtaq A and Saleem H 2003 New J. Phys. 5 28
[7]Shukla P K, Mendonca J T and Bingham R 2004 Phys. Scr. T113 133
[8]Tiwari R S, Kaushik A and Mishra M K 2007 Phys. Lett. A 365 335
[9]Roy K, Misra A P and Chatterjee P 2008 Phys. Plasmas 15 032310
[10]Masood W, Mirza A M and Hanif M 2008 Phys. Plasmas 15 072106
[11]El-Shamy E F, Moslem W M and Shukla P K 2009 Phys. Lett. A 374 290
[12]El-Shamy E F 2010 IEEE Trans. Plasma Sci. 38 909
[13]El-Shamy E F and El-Bedwehy N A 2010 Phys. Lett. A 374 4425
[14]El-Labany S K, El-Shamy E F, El-Taibany W F and Shukla P K 2010 Phys. Lett. A 374 960
[15]El-Labany S K, El-Shamy E F, Sabry R and Khedr D M 2013 Phys. Plasmas 20 012105
[16]El-Shamy E F 2014 Phys. Plasmas 21 082110
[17]Nejoh Y N 1996 Aust. J. Phys. 49 967
[18]Tribeche M 2010 Phys. Plasmas 17 042110
[19]Tribeche M, Aoutou K, Younsi S and Amour R 2009 Phys. Plasmas 16 072103
[20]Sahu B 2010 Phys. Scr. 82 065504
[21]El-Shamy E F, El-Taibany W F, El-Shewy E K and El-Shorbagy K H 2012 Astrophys. Space Sci. 338 279
[22]Rahman M M, Alam M S and Mamun A A 2014 Astrophys. Space Sci. 352 193
[23]Rahman M M, Alam M S and Mamun A A 2014 Eur. Phys. J. Plus 129 84
[24]Shah M G, Hossen M R and Mamun A A 2015 Braz. J. Phys. 45 219
[25]Rahman M M, Alam M S and Mamun A A 2015 Braz. J. Phys. 45 314
[26]Shah M G, Hossen M R, Sultana S and Mamun A A 2015 Chin. Phys. Lett. 32 085203
[27]Uddin M J, Alam M S and Mamun A A 2015 Phys. Plasmas 22 022111
[28]Shah M G, Hossen M R and Mamun A A 2015 J. Plasma Phys. 81 905810517
[29]Uddin M J, Alam M S, Masud M M, Anowar G M and Mamun A A 2015 IEEE Trans. Plasma Sci. 43 985
[30]Yoon P H, Rhee T and Ryu C M 2005 Phys. Rev. Lett. 95 215003
[31]Yoon P H, Rhee T and Ryu C M 2006 J. Geophys. Res. 111 A09106
[32]Rhee T, Ryu C M and Yoon P H 2006 J. Geophys. Res. 111 A09107
[33]Ryu C M, Rhee T, Umeda T, Yoon P H and Omura Y 2007 Phys. Plasmas 14 100701
[34]Chow S N and Hale J K 1981 Method of Bifurcation Theory (New York: Springer)
[35]Samanta U K, Saha A and Chatterjee P 2013 Phys. Plasmas 20 052111
[36]Selim M M, El-Depsy A and El-Shamy E F 2015 Astrophys. Space Sci. 360 66
[37]El-Shamy E F, Al-Chouikh R C El-Depsy A and Al-Wadie N S 2016 Phys. Plasmas 23 122122
[38]Abdelwahed H G, El-Shewy E K, El-Depsy A and El-Shamy E F 2017 Phys. Plasmas 24 023703
[39]Guernica A V and Stenflo L 1988 Phys. Scr. 38 855
[40]Washimi H and Taniuti T 1966 Phys. Rev. Lett. 17 996
[41]El-Shamy E F 2015 Phys. Rev. E 91 033105
Related articles from Frontiers Journals
[1] You-Mei Wang, M. Y. Yu, L. Stenflo, A. R. Karimov. Evolution of a Cold Non-neutral Electron–Positron Plasma Slab[J]. Chin. Phys. Lett., 2016, 33(08): 065201
[2] M. Ferdousi, S. Yasmin, S. Ashraf, A. A. Mamun. Ion-Acoustic Shock Waves in Nonextensive Electron-Positron-Ion Plasma[J]. Chin. Phys. Lett., 2015, 32(01): 065201
Viewed
Full text


Abstract