Chin. Phys. Lett.  2017, Vol. 34 Issue (12): 125202    DOI: 10.1088/0256-307X/34/12/125202
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES |
Effects of Three Typical Resistivity Models on Pulsed Inductive Plasma Acceleration Modeling
Xin-Feng Sun1, Yan-Hui Jia1, Tian-Ping Zhang1, Chen-Chen Wu1, Xiao-Dong Wen1, Ning Guo1, Hai Jin2**, Yu-Jun Ke1, Wei-Long Guo1
1National Key Laboratory of Science and Technology on Vacuum Technology and Physics, Lanzhou Institute of Physics, Lanzhou 730000
2College of Electrical and Information Engineering, Lanzhou University of Technology, Lanzhou 730050
Cite this article:   
Xin-Feng Sun, Yan-Hui Jia, Tian-Ping Zhang et al  2017 Chin. Phys. Lett. 34 125202
Download: PDF(661KB)   PDF(mobile)(771KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The effects of three different typical resistivity models (Spitzer, Z&L and M&G) on the performance of pulsed inductive acceleration plasma are studied. Numerical results show that their influences decrease with the increase of the plasma temperature. The significant discriminations among them appear at the plasma temperature lower than 2.5 eV, and the maximum gap of the pulsed inductive plasma accelerated efficiency is approximately 2.5%. Moreover, the pulsed inductive plasma accelerated efficiency is absolutely related to the dynamic impedance parameters, such as voltage, inductance, capacitance and flow rate. However, the distribution of the efficiency as a function of plasma temperature with three resistivity models has nothing to do with the dynamic impedance parameter.
Received: 13 July 2017      Published: 24 November 2017
PACS:  52.75.Di (Ion and plasma propulsion)  
  51.50.+v (Electrical properties)  
  52.25.Jm (Ionization of plasmas)  
  52.80.Yr (Discharges for spectral sources)  
Fund: Supported by the Fund of Science and Technology on Vacuum Technology and Physics Laboratory of Lanzhou Institute of Physics under Grant No YSC0715, the National Natural Science Foundation of China under Grant No 62601210, and the Civil Aerospace Technology Research Project under Grant No D010509.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/34/12/125202       OR      https://cpl.iphy.ac.cn/Y2017/V34/I12/125202
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Xin-Feng Sun
Yan-Hui Jia
Tian-Ping Zhang
Chen-Chen Wu
Xiao-Dong Wen
Ning Guo
Hai Jin
Yu-Jun Ke
Wei-Long Guo
[1]Dailey C L and Lovberg R H 1972 AIAA J. 10 125
[2]Dailey C L and Davis H A 1982 16th Int. Electric Propulsion Conf. (New Orleans Am. 17–19 November 1982) p 192
[3]Lovberg R H and Dailey C 1982 AIAA J. 20 971
[4]Polzin K A 2011 J. Propulsion Power 27 513
[5]Dailey C L and Lovberg R H 1993 NASA Contractor Report (NASA USA 1993) p 191155
[6]Lovberg R H and Dailey C L 2000 NASA Contractot Report (NASA USA 2000) p 210573
[7]Peterkin R E, Frese M H and Sovinec C R 1998 J. Comput. Phys. 140 148
[8]Mikellides P G and Ratnayake N 2007 J. Propulsion Power 23 854
[9]Villarreal J K 2009 47th AIAA Aerosp. Sci. Meeting Including New Horizons Forum Aerosapce Exposition (Orlando, USA 5–8 January 2009) p 201
[10]Corpening J, Li D, Hrbud I and Merkle C 2007 43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conf. Exhibit (Cincinnati, USA 8–11 July 2007) p 5286
[11]Meeks W C and Rovey J L 2012 50th AIAA Aerosp. Sci. Meeting Including New Horizons Forum Aerosp. Exposition (Nashville, USA 9–12 January 2012) p 0514
[12]Polzin K A and Choueiri E Y 2006 IEEE Trans. Plasma Sci. 34 945
[13]Polzin K Z 2006 PhD Dissertation (Princeton: Princeton University)
[14]Polzin K A 2008 IEEE Trans. Plasma Sci. 36 2189
[15]Hallock A K and Choueiri E Y 2009 45th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit (Denver, USA 2–5 August 2009) p 5448
[16]Hallock A K and Polzin K A 2011 8th MSS/6thLPS/5th SPS Meeting (Huntsville, USA 5–9 December 2011) p 2197
[17]Khoramabadi M and Masoudi S F 2013 Chin. Phys. Lett. 30 085202
[18]Sun S R and Wang H X 2014 Chin. Phys. Lett. 31 095205
[19]Mohanti R B and Gilligan J G 1990 J. Appl. Phys. 68 5044
[20]Spitzer L 1956 Physics of Full Ionized Cases (New York: Inter Science) chap 5 p 136
[21]Zollweg R J and Liebermann R W 1987 J. Appl. Phys. 62 3621
Related articles from Frontiers Journals
[1] Xiao-Xue Jing, Da-Qing Li, Yong Zhang, Xiang-Yu Hou, Jie Jiang, Xing-Ce Fan, Meng-Chen Wang, Shao-Peng Feng, Yuan-fang Yu , Jun-Peng Lu, Zhen-Liang Hu, and Zhen-Hua Ni. Surface-Enhanced Raman Scattering of Hydrogen Plasma-Treated Few-Layer MoTe$_{2}$[J]. Chin. Phys. Lett., 2021, 38(7): 125202
[2] ZHENG Zhi-Yuan, FAN Zhen-Jun, WANG Si-Wen, DONG Ai-Guo, XING Jie, ZHANG Zi-Li. The Effect of Viscosity of Liquid Propellant on Laser Plasma Propulsion[J]. Chin. Phys. Lett., 2012, 29(9): 125202
[3] PAN Wen-Xia, LI Teng, WU Cheng-Kang. Effects of Anode Temperature on Working Characteristics and Performance of a Low Power Arcjet Thruster[J]. Chin. Phys. Lett., 2009, 26(12): 125202
[4] ZHENG Zhi-Yuan, ZHANG Yi, ZHOU Wei-Gong, LU Xin, LI Yu-Tong, ZHANG Jie. High Coupling Efficiency Generation in Water Confined Laser Plasma Propulsion[J]. Chin. Phys. Lett., 2007, 24(2): 125202
[5] ZHENG Zhi-Yuan, ZHANG Jie, LU Xin, HAO Zuo-Qiang, Xu Miao-Hua, WANG Zhao-Hua, WEI Zhi-Yi. Effects of Confined Laser Ablation on Laser Plasma Propulsion[J]. Chin. Phys. Lett., 2005, 22(7): 125202
Viewed
Full text


Abstract