Chin. Phys. Lett.  2017, Vol. 34 Issue (12): 125203    DOI: 10.1088/0256-307X/34/12/125203
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES |
Microstructure and Deuterium Retention of Tungsten Deposited by Hollow Cathode Discharge in Deuterium Plasma
Zhong-Chao Sun1, Zi-Wei Lian1, Wei-Na Qiao1, Jian-Gang Yu1, Wen-Jia Han1, Qing-Wei Fu1,2, Kai-Gui Zhu1,2**
1Department of Physics, Beihang University, Beijing 100191
2Beijing Key Laboratory of Advanced Nuclear Energy Materials and Physics, Beihang University, Beijing 100191
Cite this article:   
Zhong-Chao Sun, Zi-Wei Lian, Wei-Na Qiao et al  2017 Chin. Phys. Lett. 34 125203
Download: PDF(1799KB)   PDF(mobile)(1797KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Tungsten has been chosen as one of the most promising candidates as the plasma-facing material in future fusion reactors. Although tungsten has numerous advantages compared with other materials, issues including dust are rather difficult to deal with. Dust is produced in fusion devices by energetic plasma-surface interaction. The re-deposition of dust particles could cause the retention of fuel atoms. In this work, tungsten is deposited with deuterium plasma by hollow cathode discharge to simulate the dust production in a tokamak. The morphology of the deposited tungsten can be described as a film with spherical particles on it. Thermal desorption spectra of the deposited tungsten show extremely high desorption of the peak positions. It is also found that there is a maximum retention of deuterium in the deposited tungsten samples due to the dynamic equilibrium of the deposition and sputtering process on the substrates.
Received: 06 July 2017      Published: 24 November 2017
PACS:  52.55.Fa (Tokamaks, spherical tokamaks)  
  52.40.Hf (Plasma-material interactions; boundary layer effects)  
  28.52.Fa (Materials)  
Fund: Supported by the National Magnetic Confinement Fusion Program under Grant No 2015GB109003, and the National Natural Science Foundation of China under Grant No 11675010.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/34/12/125203       OR      https://cpl.iphy.ac.cn/Y2017/V34/I12/125203
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Zhong-Chao Sun
Zi-Wei Lian
Wei-Na Qiao
Jian-Gang Yu
Wen-Jia Han
Qing-Wei Fu
Kai-Gui Zhu
[1]Rosanvallon S, Grisolia C, Andrew P, Ciattaglia S, Delaporte P, Douai D, Garnier D, Gauthier E, Gulden W and Hong S H 2009 J. Nucl. Mater. 390 57
[2]Carmack W J and Anderl R A 2000 Fusion Eng. Des. 51 477
[3]Mccarthy K A, Petti D A, Carmack W J and Smolik G R 1998 Fusion Eng. Des. 42 45
[4]Tsujikawa H, Maruoka S, Koeda M, Uryu S, Funaba K, Shibanuma K, Kakudate S, Kanamori N, Tada E and Ohkawa Y 1996 Vacuum 47 639
[5]Hassanein A, Wiechers B and Konkashbaev I 1998 J. Nucl. Mater. 258 295
[6]Mayer M, Behrisch R, Andrew P, Coad J P and Peacock A T 1999 Phys. Scr. T81 13
[7]Sharpe J P, Petti D A and Bartels H W 2002 Fusion Eng. Des. 63 153
[8]Baluc N, Abe K, Boutard J L, Chernov V M, Diegele E, Jitsukawa S, Kimura A, Klueh R L, Kohyama A and Kurtz R J 2007 Nucl. Fusion 47 S696
[9]Luo G N, Zhang X D, Yao D M, Gong X Z, Chen J L, Yang Z S, Li Q, Shi B and Li J G 2007 Phys. Scr. T128 1
[10]Roth J, Tsitrone E, Loarte A, Loarer Th, Counsell G, Neu R, Philipps V, Brezinsek S, Lehnen M and Coad P 2009 J. Nucl. Mater. 390 1
[11]Fortunazalesna E, Grzonka J, Rasinski M, Balden M, Rohde V and Kurzydlowski K J 2014 Phys. Scr. T159 014066
[12]Sharpe J P, Humrickhouse P W, Skinner C H, Tanabe T, Masaki K, Miya N and Sagara A 2005 J. Nucl. Mater. 337 1000
[13]Grisolia C, Hodille E, Chene J, Garcia-Argote S, Pieters G, El-Kharbachi A, Marchetti L, Martin F, Miserque F and Vrel D 2014 J. Nucl. Mater. 463 885
[14]Han Q, Wang J and Zhang L Z 2016 Plasma Sci. Technol. 18 72
[15]Zhang L, He F, Li S C and Ouyang J T 2013 Chin. Phys. B 22 125202
[16]Chapman B and Vossen J L 1980 Glow Discharge Processes: Sputtering and Plasma Etching. (New York: Wiley)
[17]Ferrar C 1981 IEEE J. Quantum Electron. 17 817
[18]Poon M, Haasz A A, Davis J W and Macaulay-Newcombe R G 2003 J. Nucl. Mater. 313 199
[19]Tanabe T 2014 Phys. Scr. T159 014044
[20]Fukumoto K I, Matsui H, Candra Y, Takahashi K, Sasanuma H, Nagata S and Takahiro K 2000 J. Nucl. Mater. 283 535
[21]Peng H Y, Lee H T, Ohtsuka Y and Ueda Y 2013 J. Nucl. Mater. 438 S1063
[22]Ogorodnikova O V, Roth J and Mayer M 2008 J. Appl. Phys. 103 034902
[23]Poon M, Haasz A A and Davis J W 2008 J. Nucl. Mater. 374 390
[24]Wang P, Jacob W, Gao L, Elgeti and Balden M 2014 Phys. Scr. T159 014046
[25]Ogorodnikova O V, Roth J and Mayer M 2003 J. Nucl. Mater. 313-316 469
[26]Lian Z W, Fang X Q, Han W J, Yu J G, Wang Z L, Zhang Y and Zhu K G 2016 Fusion Eng. Des. 112 136
Related articles from Frontiers Journals
[1] Longwen Yan, Jinming Gao, Xianggan Miao, Zhihui Huang, Na Wu, Wenjin Chen, Ting Wu, Weice Wang, Liang Liu, Xiaoxue He, Kaiyang Yi, Yu He, Lin Nie, Zhongbing Shi, and Wulv Zhong. Scaling Laws of Heat Flux Width in the HL-2A Closed Divertor Tokamak[J]. Chin. Phys. Lett., 2022, 39(11): 125203
[2] Chang Jiang, Chao Dong, and Ding Li. Transverse Rutherford Scattering of Electron-Ion Collision in a Uniformly Magnetized Plasma[J]. Chin. Phys. Lett., 2022, 39(2): 125203
[3] Ming Xu, Guoqiang Zhong, Baolong Hao, Wei Shen, Liqun Hu, Wei Chen, Zhiyong Qiu, Xuexi Zhang, Youjun Hu, Yingying Li, Hailin Zhao, Haiqing Liu, Bo Lyu, and the EAST Team. Excitation of RSAEs during Sawteeth-Like Oscillation in EAST[J]. Chin. Phys. Lett., 2021, 38(8): 125203
[4] Feng Wang , Rui Zhao , Zheng-Xiong Wang, Yue Zhang , Zhan-Hong Lin , Shi-Jie Liu , and CFETR Team. PTC: Full and Drift Particle Orbit Tracing Code for $\alpha$ Particles in Tokamak Plasmas[J]. Chin. Phys. Lett., 2021, 38(5): 125203
[5] Liming Yu, Wei Chen, Xiaoquan Ji, Peiwan Shi, Xuantong Ding, Zhongbing Shi, Ruirui Ma, Yumei Hou, Yonggao Li, Jiaxian Li, Jianyong Cao, Wulyu Zhong, Min Xu, and Xuru Duan. Observation of Multiple Broadband Alfvénic Chirping Modes in HL-2A NBI Plasmas[J]. Chin. Phys. Lett., 2021, 38(5): 125203
[6] Tong Liu , Lai Wei , Feng Wang, and Zheng-Xiong Wang . Coriolis Force Effect on Suppression of Neo-Classical Tearing Mode Triggered Explosive Burst in Reversed Magnetic Shear Tokamak Plasmas[J]. Chin. Phys. Lett., 2021, 38(4): 125203
[7] Hao Shi, Wenlu Zhang, Chao Dong, Jian Bao, Zhihong Lin, Jintao Cao, and Ding Li. Temperature Gradient, Toroidal and Ion FLR Effects on Drift-Tearing Modes[J]. Chin. Phys. Lett., 2020, 37(8): 125203
[8] Wei Hu, Hong-Ying Feng, Wen-Lu Zhang. Comparison of ITG and TEM Microturbulence in DIII–D Tokamak[J]. Chin. Phys. Lett., 2019, 36(8): 125203
[9] Yan-Bin Wu, Tian-Yang Xia, Fang-Chuan Zhong, Bin Gui, EAST Team. Impact of Sheath Boundary Conditions and Magnetic Flutter on Evolution and Distribution of Transient Particle and Heat Fluxes in the Edge-Localized Mode Burst by Experimental Advanced Superconducting Tokamak Simulation[J]. Chin. Phys. Lett., 2019, 36(4): 125203
[10] Wei Hu, Hong-Ying Feng, Chao Dong. Collisional Effects on Drift Wave Microturbulence in Tokamak Plasmas[J]. Chin. Phys. Lett., 2018, 35(10): 125203
[11] Wen Yang, Ding Li, Xue-qiao Xu. Effect of Hyper-Resistivity on Nonlinear Tearing Modes[J]. Chin. Phys. Lett., 2018, 35(6): 125203
[12] Jing-Bo Lin, Wen-Lu Zhang, Peng-Fei Liu, Chao Dong, Jin-Tao Cao, Ding Li. Particle Trajectory Integrator in Guiding Center Phase Space[J]. Chin. Phys. Lett., 2018, 35(2): 125203
[13] Bo Shi, Zhen-Dong Yang, Bin Zhang, Cheng Yang, Kai-Fu Gan, Mei-Wen Chen, Jin-Hong Yang, Hui Zhang, Jun-Li Qi, Xian-Zu Gong, Xiao-Dong Zhang, Wei-Hua Wang. Heat Flux on EAST Divertor Plate in H-mode with LHCD/LHCD+NBI[J]. Chin. Phys. Lett., 2017, 34(9): 125203
[14] N. Hasanvand, S. Meshkani, M. Ghoranneviss. The Diffusion Coefficient Using Sawtooth Oscillation in IR-T1 Tokamak[J]. Chin. Phys. Lett., 2017, 34(8): 125203
[15] N. Hasanvand, M. R. Riazifar, R. Alipour, S. Meshkani, M. Ghoranneviss. Improving Plasma Confinement by Controlling Hard X-Ray[J]. Chin. Phys. Lett., 2016, 33(11): 125203
Viewed
Full text


Abstract