Chin. Phys. Lett.  2017, Vol. 34 Issue (12): 122502    DOI: 10.1088/0256-307X/34/12/122502
NUCLEAR PHYSICS |
Spallation Yield of Neutrons Produced in Thick Lead Target by 400MeV/u Carbon Ions
Fei Ma1, Hong-Bin Zhang1**, Xue-Ying Zhang1, Yan-Bin Zhang1, Hong-Lin Ge1, Yong-Qin Ju1, Liang Chen1, Yan-Yan Li1, Bo Wan1, Bin Zhou2, Jun-Kui Xu1
1Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000
2Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049
Cite this article:   
Fei Ma, Hong-Bin Zhang, Xue-Ying Zhang et al  2017 Chin. Phys. Lett. 34 122502
Download: PDF(613KB)   PDF(mobile)(605KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Measurement of the neutron yield is performed at a primary energy of 400 MeV/u carbons for the Pb target. Water-bath activation-foil method is used in a moderation measurement with Au foils to detect the moderated neutrons. The neutron yield is determined to be $18.4{\pm}2.1$ per carbon by integrating the neutron flux over the entire water volume. The corresponding simulation values are performed by Geant4 code with three models to compare with the experimental results. The comparison shows that the calculated result with the INCL model is in good agreement with the experimental data.
Received: 22 August 2017      Published: 24 November 2017
PACS:  25.40.Sc (Spallation reactions)  
  28.20.-v (Neutron physics)  
  24.10.Lx (Monte Carlo simulations (including hadron and parton cascades and string breaking models))  
Fund: Supported by the National Natural Science Foundation of China under Grant Nos 11575267, 11775284, 11575289 and 11605258.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/34/12/122502       OR      https://cpl.iphy.ac.cn/Y2017/V34/I12/122502
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Fei Ma
Hong-Bin Zhang
Xue-Ying Zhang
Yan-Bin Zhang
Hong-Lin Ge
Yong-Qin Ju
Liang Chen
Yan-Yan Li
Bo Wan
Bin Zhou
Jun-Kui Xu
[1]Yashima H, Uwamino Y, Iwase H, Sugita H, Nakamura T, Ito S and Fukumura A 2004 Nucl. Instrum. Methods Phys. Res. Sect. B 226 243
[2]Issaa Shams A M, Uosifbv M A M, Michela R, Herpersc U, Malmborgd P and Holmqviste B 2013 Nucl. Instrum. Methods Phys. Res. Sect. B 298 19
[3]Michel R, Gloris M, Lange H J, Leya I, Lupke M, Herpers U, Dittrich-Hannen B, Rosel R, Schiekel Th, Filges D, Dragovitsch P, Suter M, Hofmann H J, Wolfli W, Kubik W, Baur and Wieler R 1995 Nucl. Instrum. Methods Phys. Res. Sect. B 103 183
[4]Michel R, Bodemann R, Busemann H, Daunke R, Gloris M, Lange H J, Klug B, Krins A, Leya I, Lupke M, Neumann S, Reinhhardt H, Schnatz-Buttgen M, Herpers U, Schiekel Th, Sudbrock F, Holmqvist B, Conde H and Filges D 1997 Nucl. Instrum. Methods Phys. Res. Sect. B 129 153
[5]Ju Y Q, Zhang X Y, Ma F, Wang J G, Zhang H B, Chen L, Ge H L, Luo P, Zhang Y B, Li Y Y, Wan B, Zhou B and Liang T J 2015 J. Phys. G 42 125102
[6]Zhang X Y, Zhang Y B, a, Ma F, Ju Y Q, Chen L, Zhang H B, Li Y Y, Wan B, Wang J G and Ge H L 2015 Eur. Phys. J. A 51 106
[7]Chen L, Ma F, Zhang X Y, Ju Y Q, Zhang H B, Ge H L, Wang J G, Zhou B, Li Y Y, Xu X W, Lu P, Yang L, Zhang Y B, Li J Y, Xu J K, Liang T J, Wang S L, Yang Y W and Gu L 2015 Nucl. Instrum. Methods Phys. Res. Sect. B 342 87
[8]Cumming J B, Haustein P E and Stoenner R W 1974 Phys. Rev. C 10 739
[9]Cumming J B, Stoenner R W and Haustein P E 1976 Phys. Rev. C 14 1554
[10]Cumming J B, Haustein P E, Ruth T J and Virtes G J 1978 Phys. Rev. C 17 1632
[11]Hicks K H, Ward T E, Bowman H, Ingersoll J G, Rasmussen J O, Sullivan J P, Koike M and Peter J 1982 Phys. Rev. C 26 2016
[12]Porile N T, Cole G D and Rudy C R 1979 Phys. Rev. C 19 2288
[13]Whitfield J P and Porile N T 1993 Phys. Rev. C 47 1636
[14]Yashima H, Uwamino Y, Sugita H, Nakamura T, Ito S and Fukumura A 2002 Phys. Rev. C 66 044607
[15]Ogawa T, Morev M N, Sato T and Hashimota S 2013 Nucl. Instrum. Methods Phys. Res. Sect. B 300 35
[16]Ge H L, Ma F, Zhang X Y, Ju Y Q, Zhang H B, Chen L, Luo P, Zhou B, Zhang Y B, Li J Y, Xu J K, Liang T J, Wang S L, Yang Y W and Yang L 2014 Nucl. Instrum. Methods Phys. Res. Sect. B 337 34
[17]Zhang H B, Zhang X Y, Ma F, Ju Y Q, Ge H L, Chen L, Zhang Y B, Wei J F, Li Y Y, Luo P, Wang J G, Wan B, Xu X W and Zhou B 2015 Chin. Phys. Lett. 32 042501
[18]http://geant4.web.cern.ch/geant4/
[19]Xia J W, Zhan W L, Wei B W, Yuan Y J, Song M T, Zhang W Z, Yang X D, Yuan P, Gao D Q, Zhao H W, Yang X T, Xiao G Q, Man K T, Dang J R, Cai X H, Wang Y F, Tang J Y, Qiao W M, Rao Y N, He Y, Mao L Z and Zhou Z Z 2002 Nucl. Instrum. Methods Phys. Res. Sect. A 488 11
[20]Bondorf J P, Botvina A S, Iljinov A S, Mishustin I N and Sneppen K 1995 Phys. Rep. 257 133
[21]Bertini H W 1969 Phys. Rev. 188 1711
[22]Atchison F 1994 Intermediate Energy Nucl. Data: Models Codes Proc. A Specialists' Meeting (30 May–1 June, Issy-Les-Moulineaux, France) p 199 OECD/NEA
[23]Filges D and Goldenbaum F 2009 Handbook of Spallation Research (Birlin: Wiley-VCH)
Related articles from Frontiers Journals
[1] ZHANG Hong-Bin, ZHANG Xue-Ying, MA Fei, JU Yong-Qin, GE Hong-Lin, CHEN Liang, ZHANG Yan-Bin, WEI Ji-Fang, LI Yan-Yan, LUO Peng, WANG Jian-Guo, WAN Bo, XU Xiao-Wei, ZHOU Bin. Residual Nuclides Induced in Cu Target by a 250 MeV Proton Beam[J]. Chin. Phys. Lett., 2015, 32(4): 122502
[2] OU Li, ZHANG Ying-Xun, LI Zhu-Xia,. Mechanism of Proton-Induced Reactions on Targets 16O, 27Al, 56Fe, 112Cd, 184W and 208Pb At Ep = 800MeV[J]. Chin. Phys. Lett., 2007, 24(1): 122502
Viewed
Full text


Abstract