Chin. Phys. Lett.  2017, Vol. 34 Issue (12): 123401    DOI: 10.1088/0256-307X/34/12/123401
ATOMIC AND MOLECULAR PHYSICS |
An Isotropic Empirical Intermolecular Potential for Solid H$_{2}$ and D$_{2}$: A Classical Molecular Calculation
Li Yang1** , Hui Liu1, Hui-Ling Zhou1, Qing-Qiang Sun1,2, Shu-Ming Peng3, Xing-Gui Long3, Xiao-Song Zhou3, Xiao-Tao Zu1, Fei Gao4
1School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054
2School of Science, Huaihai Institute of Technology, Lianyungang 222005
3Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900
4Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI 48109 USA
Cite this article:   
Li Yang, Hui Liu, Hui-Ling Zhou et al  2017 Chin. Phys. Lett. 34 123401
Download: PDF(1198KB)   PDF(mobile)(1184KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We develop an isotropic empirical potential for molecular hydrogen (H$_{2}$) and deuterium (D$_{2}$) by fitting to solid-state data, which is appropriate for classical molecular dynamics (CMD) approach. Based on the prior isotropic intermolecular potential used in self-consistent phonon approximation, a zero-point energy term and an embedded energy term are introduced to describe the H$_{2}$–H$_{2}$ and D$_{2}$–D$_{2}$ interactions in CMD simulations. The structure, cohesive energy and elastic properties of solid H$_{2}$ (D$_{2})$ are used as the fitting database. The present method is tested by calculating the melting point of solid H$_{2}$, and the pressure and bulk elastic modulus as a function of volume. The developed potentials well reproduce many properties of solid H$_{2}$ and D$_{2}$.
Received: 03 August 2017      Published: 24 November 2017
PACS:  34.20.Gj (Intermolecular and atom-molecule potentials and forces)  
  02.70.Ns (Molecular dynamics and particle methods)  
  62.20.de (Elastic moduli)  
  61.50.Lt (Crystal binding; cohesive energy)  
Fund: Supported by the National Natural Science Foundation of China under Grant No U1430109.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/34/12/123401       OR      https://cpl.iphy.ac.cn/Y2017/V34/I12/123401
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Li Yang
Hui Liu
Hui-Ling Zhou
Qing-Qiang Sun
Shu-Ming Peng
Xing-Gui Long
Xiao-Song Zhou
Xiao-Tao Zu
Fei Gao
[1]Hurricane O A, Callahan D A and Casey D T 2014 Nature 506 343
[2]Ye Y T, Yang L, Yang T L, Nie J L, Peng S M, Long X G, Zu X T and Du J C 2015 Eur. Phys. J. B 88 161
[3]Sun Q Q, Ye Y T, Yang T L, Yang L, Peng S M, Long X G, Zhou X S, Zu X T and Du J C 2015 Eur. Phys. J. B 88 332
[4]Guerrero C, Cuesta-Lopez S and Perlado J M 2013 EPJ. Web Conf. 59 16004
[5]Bruce T A 1972 Phys. Rev. B 5 4170
[6]Silvera I F and Goldman V V 1978 J. Chem. Phys. 69 4209
[7]Silvera I F 1980 Rev. Mod. Phys. 52 393
[8]Curzon A E and Mascall A J 1965 Brit. J. Appl. Phys. 16 1301
[9]Gao F, Deng H Q, Heinisch H L and Kurtz R J 2011 J. Nucl. Mater. 418 115
[10]Brenner D W 1990 Phys. Rev. B 42 9458
Matsubara K, Sugihara K and Tsuzuku T 1992 Phys. Rev. B 46 1948
[11]Gao F, Bacon D J, Flewitt P E J and Lewis T A 1997 J. Nucl. Mater. 249 77
[12]Goldman V V 1977 J. Low Temp. Phys. 26 203
[13]Morn M and Huang K 1954 Dynamical Theory of Crystal Lattices (Oxford: Clarendon Press)
[14]Nielsen M 1973 Phys. Rev. B 7 1626
[15]Wanner R and Meyer H 1973 J. Low Temp. Phys. 11 715
[16]Ebner C and Sung C C 1972 Phys. Rev. A 5 2625
[17]https://www.webelements.com/hydrogen/
[18]Felsteiner J 1965 Phys. Rev. Lett. 15 1025
[19]Schuch A F and Mills R L 1966 Phys. Rev. Lett. 16 616
[20]Li X C, Shu X L, Liu Y N, Gao F and Lu G H 2011 J. Nucl. Mater. 408 12
[21]Zu X T, Yang L, Gao F, Peng S M, Heinisch H L, Long X G and Kurtz R J 2009 Phys. Rev. B 80 054104
[22]Goldman V V 1979 J. Low Temp. Phys. 36 521
[23]Anderson M S and Swenson C A 1974 Phys. Rev. B 10 5184
[24]Silvera I F, Driessen A and De Waal J A 1978 Phys. Lett. A 68 207
[25]Stewart J W 1956 J. Chem. Phys. Solids 1 146
Related articles from Frontiers Journals
[1] Xitao Yu, Xiaoqing Hu, Jiaqi Zhou, Xinyu Zhang, Xinning Zhao, Shaokui Jia, Xiaorui Xue, Dianxiang Ren, Xiaokai Li, Yong Wu, Xueguang Ren, Sizuo Luo, and Dajun Ding. Measuring Charge Distribution of Molecular Cations by an Atomic Coulomb Probe Microscope[J]. Chin. Phys. Lett., 2022, 39(11): 123401
[2] Ming-Ming Zhao, Li-Hang Li, Bo-Wen Si, Bin-Bin Wang, Bina Fu, and Yong-Chang Han. Three-Body Recombination of Cold $^{3}$He–$^{3}$He–T$^-$ System[J]. Chin. Phys. Lett., 2022, 39(8): 123401
[3] SONG Hua-Jie, HUANG Feng-Lei** . Accurately Predicting the Density and Hydrostatic Compression of Hexahydro-1,3,5-Trinitro-1,3,5-Triazine from First Principles[J]. Chin. Phys. Lett., 2011, 28(9): 123401
[4] O. Bayrak**, A. Soylu, I. Boztosun . Effect of the Velocity-Dependent Potentials on the Bound State Energy Eigenvalues[J]. Chin. Phys. Lett., 2011, 28(4): 123401
[5] FENG Yu-Liang, ZHANG Yuan, JI Bing-Yu, MU Wen-Zhi . Micro-acting Force in Boundary Layer in Low-Permeability Porous Media[J]. Chin. Phys. Lett., 2011, 28(2): 123401
[6] A. Soylu, O. Bayrak, I. Boztosun. Exact Solutions of Klein--Gordon Equation with Scalar and Vector Rosen--Morse-Type Potentials[J]. Chin. Phys. Lett., 2008, 25(8): 123401
[7] ZHANG Ji-Cheng, SONG Kao-Ping, LIU Li, YANG Er-Long. Investigation on Mechanisms of Polymer Enhanced Oil Recovery by Nuclear Magnetic Resonance and Microscopic Theoretical Analysis[J]. Chin. Phys. Lett., 2008, 25(5): 123401
[8] YANG Er-Long, SONG Kao-Ping. Displacement Mechanism of Polymer Flooding by Molecular Tribology[J]. Chin. Phys. Lett., 2006, 23(9): 123401
[9] CHENG Xiao-Man, YAO Su-Wei, LI Cheng-Quan, MANAKA Takaaki, IWAMOTO Mitsumasa. Measurement of Surface Potential at Metal/Organic-Material Interfaces by Electro-Absorption Method[J]. Chin. Phys. Lett., 2004, 21(10): 123401
[10] WANG De-Hua, DING Shi-Liang,. A New Model Potential Acting on the Excited Electron Within Molecules: Application to Calculate the Recurrence Spectra of Excited H2 Molecules in Strong External Fields[J]. Chin. Phys. Lett., 2004, 21(7): 123401
[11] BAI Yu-Lin, CHENG Xiao-Hong, CHEN Xiang-Rong, YANG Xiang-Dong, ZHU Jun. Intermolecular Interaction Potentials of CH4-Ne Complex Calculated with Local Density Approximation Methods [J]. Chin. Phys. Lett., 2004, 21(6): 123401
Viewed
Full text


Abstract