Chin. Phys. Lett.  2017, Vol. 34 Issue (11): 114201    DOI: 10.1088/0256-307X/34/11/114201
Dual-Wavelength Passively Q-Switched Ytterbium-Doped Fiber Laser Based on Aluminum Oxide Nanoparticle Saturable Absorbers
S. K. M. Al-Hayali1**, S. Selleri2, A. H. Al-Janabi1
1Institute of Laser for Postgraduate Studies, University of Baghdad, Baghdad, Iraq
2Department of Information Engineering, Parma University, Viale delle Scienze 181/A, Parma, Italy
Cite this article:   
S. K. M. Al-Hayali, S. Selleri, A. H. Al-Janabi 2017 Chin. Phys. Lett. 34 114201
Download: PDF(1040KB)   PDF(mobile)(1034KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We report on generation of a dual-wavelength, all-fiber, passively Q-switched ytterbium-doped fiber laser using aluminum oxide nanoparticle (Al$_{2}$O$_{3}$-NP) thin film. A thin film of Al$_{2}$O$_{3}$ was prepared by embedding Al$_{2}$O$_{3}$-NPs into a polyvinyl alcohol (PVA) as a host polymer, and then inserted between two fiber ferrules to act as a saturable absorber (SA). By incorporating the Al$_{2}$O$_{3}$-PVA SA into the laser cavity, a stable dual-wavelength pulse output centered at 1050 and 1060.7 nm is observed at threshold pump power of 80 mW. As the pump power is gradually increased from 80 to 300 mW, the repetition rate of the generated pulse increases from 16.23 to 59 kHz, while the pulse width decreases from 19 to 6 μs. To the best of our knowledge, this is the first demonstration for this type of SA operating in the 1 μm region.
Received: 22 August 2017      Published: 25 October 2017
PACS:  42.55.Wd (Fiber lasers)  
  42.60.Gd (Q-switching)  
Fund: Supported by the Iraqi Ministry of Higher Education and Scientific Research, and University of Baghdad.
URL:       OR
E-mail this article
E-mail Alert
Articles by authors
S. K. M. Al-Hayali
S. Selleri
A. H. Al-Janabi
[1]Luo Z Q, Huang Y Z, Weng J, Cheng H H, Lin Z Q, Xu B, Cai Z P and Xu H Y 2013 Opt. Express 21 29516
[2]Zhao J Q, Wang Y G, Yan P G, Ruan S C, Tsang Y, Zhang G L and Li H Q 2014 Opt. Commun. 312 227
[3]Aziz N A, Latiff A A, Lokman M Q, Hanafi E and Harun S W 2017 Chin. Phys. Lett. 34 044202
[4]Wang X D, Liu H C, Zhao N, Liu M, Zhu Y F, Xue J P, Luo A P and Xu W C 2015 Opt. Commun. 346 21
[5]Paschotta R, Häring R, Gini E, Melchior H, Keller U, Offerhaus H L and Richardson D J 1999 Opt. Lett. 24 388
[6]Ahmad H, Zulkifli A Z, Thambiratnam K and Harun S W 2013 IEEE Photon. J. 5 1501108
[7]Song R, Chen H W, Chen S P, Hou J and Lu Q S 2011 J. Opt. 13 035201
[8]Mohammed D Z and Al-Janabi A H 2016 Laser Phys. 26 115108
[9]Zhao J Q et al 2012 Chin. Phys. Lett. 29 114206
[10]Tang P, Zhang X, Zhao C, Wang Y, Zhang H, Shen D, Wen S, Tang D and Fan D 2013 IEEE Photon. J. 5 1500707
[11]Schmidt A, Rivier S, Steinmeyer G, Yim J H, Cho W B, Lee S, Rotermund F, Pujol M C, Mateos X, Aguiló M, Díaz F, Petrov V and Griebner U 2008 Opt. Lett. 33 729
[12]Bao Q, Zhang H, Wang Y, Ni Z, Yan Y, Shen Z X, Loh K P and Tang D Y 2009 Adv. Funct. Mater. 19 3077
[13]Du J, Wang Q, Jiang G, Xu C, Zhao C, Xiang Y, Chen Y, Wen S and Zhang H 2015 Sci. Rep. 4 6346
[14]Zulkhairi A S, Azzuhri S R, Shaharuddin R A, Jaddoa M F, Salim M A M, Jasim A A and Ahmad H 2017 Laser Phys. 27 055104
[15]Chi R, Lu K and Chen S 2003 Microwave Opt. Technol. Lett. 36 170
[16]Ahmad H, Salim M A M, Soltanian M R K, Azzuhria S R and Harun S W 2015 J. Mod. Opt. 62 1550
[17]Ahmad H, Salim M A M, Ali Z A, Ismail M F, Thambiratnam K, Latif A A, Nayan N and Harun S W 2016 Chin. Opt. Lett. 14 091403
[18]Apel O, Mann K and Marowsky G 2000 Appl. Phys. A 71 593
[19]Al-Hayali S K M, Mohammed D Z, Khaleel W A and Al-Janabi A H 2017 Appl. Opt. 56 4720
[20]Ahmad H, Sharbirin A S, Muhamad A, Samion M Z, Reduan S A, Zulkifli A Z and Ismail M F 2017 J. Lightwave Technol. 35 2470
[21]Wang Z T, Chen Y, Zhao C J, Zhang H and Wen S C 2012 IEEE Photon. J. 4 869
[22]Zhang H, Tang D Y, Wu X and Zhao L M 2009 Opt. Express 17 12692
[23]Chiu J C, Lan Y F, Chang C M, Chen X Z, Yeh C Y, Lee C K, Lin G R, Lin J J and Cheng W H 2010 Opt. Express 18 3592
Related articles from Frontiers Journals
[1] H. Ahmad, M. F. Ismail, S. N. Aidit. Optically Modulated Tunable O-Band Praseodymium-Doped Fluoride Fiber Laser Utilizing Multi-Walled Carbon Nanotube Saturable Absorber[J]. Chin. Phys. Lett., 2019, 36(10): 114201
[2] N. F. Zulkipli, M. Batumalay, F. S. M. Samsamnun, M. B. H. Mahyuddin, E. Hanafi, T. F. T. M. N. Izam, M. I. M. A. Khudus, S. W. Harun. Nanosecond Pulses Generation with Samarium Oxide Film Saturable Absorber[J]. Chin. Phys. Lett., 2019, 36(7): 114201
[3] R. Z. R. R. Rosdin, M. T. Ahmad, A. R. Muhammad, Z. Jusoh, H. Arof, S. W. Harun. Nanosecond Pulse Generation with Silver Nanoparticle Saturable Absorber[J]. Chin. Phys. Lett., 2019, 36(5): 114201
[4] Lu Li, Rui-Dong Lv, Si-Cong Liu, Zhen-Dong Chen, Jiang Wang, Yong-Gang Wang, Wei Ren. Using Reduced Graphene Oxide to Generate Q-Switched Pulses in Er-Doped Fiber Laser[J]. Chin. Phys. Lett., 2018, 35(11): 114201
[5] Gen Li, Yong Zhou, Shu-Jie Li, PeiJun Yao, Wei-qing Gao, Chun Gu, Li-Xin Xu. Synchronously Pumped Mode-Locked 1.89μm Tm-Doped Fiber Laser with High Detuning Toleration[J]. Chin. Phys. Lett., 2018, 35(11): 114201
[6] M. F. M. Rusdi, M. B. H. Mahyuddin, A. A. Latiff , H. Ahmad, S. W. Harun. Q-Switched Erbium-Doped Fiber Laser Using Cadmium Selenide Coated onto Side-Polished D-Shape Fiber as Saturable Absorber[J]. Chin. Phys. Lett., 2018, 35(10): 114201
[7] Guan Wang, Lixin Xu, Chun Gu. Passive, Stable and Order-Adjustable SBS Q-Switching Fiber Laser[J]. Chin. Phys. Lett., 2018, 35(8): 114201
[8] Qi-Rong Xiao, Jia-Ding Tian, Yu-Sheng Huang, Xue-Jiao Wang, Ze-Hui Wang, Dan Li, Ping Yan, Ma-Li Gong. Internal Features of Fiber Fuse in a Yb-Doped Double-Clad Fiber at 3kW[J]. Chin. Phys. Lett., 2018, 35(5): 114201
[9] A. Nady, M. F. Baharom, A. A. Latiff, S. W. Harun. Mode-Locked Erbium-Doped Fiber Laser Using Vanadium Oxide as Saturable Absorber[J]. Chin. Phys. Lett., 2018, 35(4): 114201
[10] Yue-e Chen, Yun-kai Zhou, De-wang Yang, Wei Yan, Yong Wang. A Temperature-Insensitive Amplified Spontaneous Emission Broadband Source Based on Er-Doped Fiber[J]. Chin. Phys. Lett., 2018, 35(4): 114201
[11] Lei Zhao, Pei-Jun Yao, Chun Gu, Li-Xin Xu. Raman-Assisted Passively Mode-Locked Fiber Laser[J]. Chin. Phys. Lett., 2018, 35(4): 114201
[12] A. M. Markom, S. J. Tan, H. Haris, M. C. Paul, A. Dhar, S. Das, S. W. Harun. Experimental Observation of Bright and Dark Solitons Mode-Locked with Zirconia-Based Erbium-Doped Fiber Laser[J]. Chin. Phys. Lett., 2018, 35(2): 114201
[13] A. H. A. Rosol, H. A. Rahman, E. I. Ismail, N. Irawati, Z. Jusoh, A. A. Latiff, S. W. Harun. Cadmium Selenide Polymer Microfiber Saturable Absorber for Q-Switched Fiber Laser Applications[J]. Chin. Phys. Lett., 2017, 34(9): 114201
[14] P. Harshavardhan Reddy, N. A. A. Kadir, M. C. Paul, S. Das, A. Dhar, E. I. Ismail, A. A. Latiff, S. W. Harun. Erbium-Doped Zirconia-Alumina Silica Glass-Based Fiber as a Saturable Absorber for High Repetition Rate Q-Switched All-Fiber Laser Generation[J]. Chin. Phys. Lett., 2017, 34(8): 114201
[15] Shang- Ming Ou, Guan-Yu Liu, Hui Lei, Zhi-Gang Zhang, Qing-Mao Zhang. Generation of 47fs Pulses from an Er:Fiber Amplifier[J]. Chin. Phys. Lett., 2017, 34(7): 114201
Full text