Chin. Phys. Lett.  2016, Vol. 33 Issue (02): 028101    DOI: 10.1088/0256-307X/33/2/028101
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
B–C Bond in Diamond Single Crystal Synthesized with h-BN Additive at High Pressure and High Temperature
Yong Li1,3,4, Zhen-Xiang Zhou2**, Xue-Mao Guan3, Shang-Sheng Li3, Ying Wang1, Xiao-Peng Jia5, Hong-An Ma5
1Physical and Applied Engineering Department, Tongren University, Tongren 554300
2Beijing Sinoma Synthetic Crystals Co., Ltd, Beijing 100018
3School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454000
4Institute of Cultural and Technological Industry Innovation of Tongren, Tongren 554300
5State Key Lab of Superhard Materials, Jilin University, Changchun 130012
Cite this article:   
Yong Li, Zhen-Xiang Zhou, Xue-Mao Guan et al  2016 Chin. Phys. Lett. 33 028101
Download: PDF(746KB)   PDF(mobile)(KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The synthesis of diamond single crystal in the Fe$_{64}$Ni$_{36}$-C system with h-BN additive is investigated at pressure 6.5 GPa and temperature range of 1300–1400$^{\circ}\!$C. The color of the obtained diamond crystals translates from yellow to dark green with increasing the h-BN addition. Fourier-transform infrared (FTIR) results indicate that $sp^{2}$ hybridization B-N-B and B-N structures generate when the additive content reaches a certain value in the system. The two peaks are located at 745 and 1425 cm$^{-1}$, respectively. Furthermore, the FTIR characteristic peak resulting from nitrogen pairs is noticed and it tends to vanish when the h-BN addition reaches 1.1 wt%. Furthermore, Raman peak of the synthesized diamond shifts down to a lower wavenumber with increasing the h-BN addition content in the synthesis system.
Received: 15 November 2015      Published: 26 February 2016
PACS:  81.05.uj (Diamond/nanocarbon composites)  
  81.15.Gh (Chemical vapor deposition (including plasma-enhanced CVD, MOCVD, ALD, etc.))  
  52.80.Pi (High-frequency and RF discharges)  
  47.11.Fg (Finite element methods)  
  47.15.Cb (Laminar boundary layers)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/33/2/028101       OR      https://cpl.iphy.ac.cn/Y2016/V33/I02/028101
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Yong Li
Zhen-Xiang Zhou
Xue-Mao Guan
Shang-Sheng Li
Ying Wang
Xiao-Peng Jia
Hong-An Ma
[1] Shi Y C, Li J J, Liu H, Zuo Y G, Bai Y, Sun Z F, Ma D L and Chen G C 2015 Chin. Phys. Lett. 32 088104
[2] Li S S, Li X L, Ma H A, Su T C, Xiao H Y, Huang G F, Li Y, Zhang Y S and Jia X P 2011 Chin. Phys. Lett. 28 068101
[3] Li Y, Jia X P, Ma H A, Zhang J, Wang F B, Chen N and Feng Y G 2014 CrystEngComm 16 7547
[4] Li Y, Jia X P, Yan B M, Zhou Z X, Fang C, Zhang Z F, Sun S S and Ma H A 2012 J. Cryst. Growth 359 49
[5] Zheng Y J, Huang G F, Li Z C and Zuo G H 2014 Chin. Phys. B 23 118102
[6] Hu M H, Bi N, Li S S, Su T C, Zhou A G, Hu Q, Jia X P and Ma H A 2015 Chin. Phys. B 24 038101
[7] Zhang C G, Y Y, Hao T and Zhang M 2015 Acta Phys. Sin. 64 018102 (in Chinese)
[8] Xiao H Y, Li S S, Qin Y K, Liang Z Z, Zhang Y S, Zhang D M and Zhang Y S 2014 Acta Phys. Sin. 63 198101 (in Chinese)
[9] Fang C, Jia X P, Yan B M, Chen N, Li Y D, Chen L C, Guo L S and Ma H A 2015 Acta Phys. Sin. 64 229501 (in Chinese)
[10] Zhou Z X, Jia X P, Li Y, Yan B M, Wang F B, Fang C, Chen N, Li Y D and Ma H A 2014 Acta Phys. Sin. 63 248104 (in Chinese)
[11] Komatsu T, Nomura M and Kakudate Y 1996 J. Mater. Chem. 6 1799
[12] Watanabe M O, Itoh S and Mizushima K 1996 Appl. Phys. Lett. 68 2962
[13] Katayama Yoshida H, Nishimatsu T, Yamamoto T and N Orita 2001 J. Phys.: Condens. Matter 13 8901
[14] Tian Y J, Xu B, Yu D L, Ma Y M, Wang Y B, Jiang Y B, Hu W T, Tang C C, Gao Y F, Luo K, Zhao Z S, Wang L M, Wen B, He J L and Liu Z Y 2013 Nature 493 385
[15] Huang Q, Yu D L, Xu B, Hu W T, Ma Y M, Wang Y B, Zhao Z S, Wen B, He J L, Liu Z Y and Tian Y J 2014 Nature 510 250
[16] Zhuang C, Zhao J and Jiang X 2009 J. Phys.: Condens. Matter 21 405401
[17] Zou Y G, Liu B B and Liu Y C 2007 Acta Phys. Sin. 56 5172 (in Chinese)
[18] Titus E, Misra D S, Sikder A K, Tyagi P K, Singh M K, Misra A, Ali N, Cabral G, Neto V F and Gracio J 2005 Diamond Relat. Mater. 14 476
[19] Logothetidis S 2003 Rev. Adv. Mater. Sci. 5 270
[20] Body S R, Kiflawi and Woods G S 1994 Philos. Mag. B 69 1149
[21] Kanda H, Akaishi M and Yamaoka S 1999 Diamond Relat. Mater. 8 1441
[22] Wada Y, Yap Y K, Yoshimura M, Mori Y and Sasakiand T 2000 Diamond Relat. Mater. 9 620
[23] Liu X B, Jia X P, Zhao M, Guo W, Huang G F and Ma H A 2011 Cryst. Growth Des. 11 1006
[24] Zhang J Q, Ma H A, Jiang Y P, Liang Z Z, Tian Y and Jia X P 2007 Diamond Relat. Mater. 16 283
[25] Ma L Q, Ma H A, Xiao H Y, Li S S, Li Y and Jia X P 2010 Chin. Sci. Bull. 55 677
[26] Watanabe M O, Sasaki T, Itoh S and Mizushima K 1996 Thin Solid Films 281 334
[27] Klotzbucher T, Peging W, Wesner D A, Mergens M and Kreutz E W 1996 Diamond Relat. Mater. 5 525
Related articles from Frontiers Journals
[1] Jun-Song Liu, Hang Li, Bo-Wen Sun, Zhan-Hui Ding, Qi-Liang Wang, Shao-Heng Cheng, Hong-Dong Li. Boron-Doped Diamond-Film-Based Two-Dimensional Electrode of Electrophoresis Tank[J]. Chin. Phys. Lett., 2016, 33(11): 028101
[2] SHI Yan-Chao, LI Jia-Jun, LIU Hao, ZUO Yong-Gang, BAI Yang, SUN Zhan-Feng, MA Dian-Li, CHEN Guang-Chao. Nano-Crystalline Diamond Films Grown by Radio-Frequency Inductively Coupled Plasma Jet Enhanced Chemical Vapor Deposition[J]. Chin. Phys. Lett., 2015, 32(08): 028101
[3] LI Bin, ZHANG Qin-Jian, SHI Yan-Chao, LI Jia-Jun, LI Hong, LU Fan-Xiu, CHEN Guang-Chao. Nano-Crystalline Diamond Films with Pineapple-Like Morphology Grown by the DC Arcjet vapor Deposition Method[J]. Chin. Phys. Lett., 2014, 31(08): 028101
Viewed
Full text


Abstract