Chin. Phys. Lett.  2016, Vol. 33 Issue (10): 102103    DOI: 10.1088/0256-307X/33/10/102103
NUCLEAR PHYSICS |
Relativistic Brueckner–Hartree–Fock Theory for Finite Nuclei
Shi-Hang Shen1,2, Jin-Niu Hu3, Hao-Zhao Liang2,4, Jie Meng1,5,6**, Peter Ring1,7, Shuang-Quan Zhang1
1State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871
2RIKEN Nishina Center, Wako 351-0198, Japan
3Department of Physics, Nankai University, Tianjin 300071
4Department of Physics, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
5School of Physics and Nuclear Energy Engineering, Beihang University, Beijing 100191
6Department of Physics, University of Stellenbosch, Stellenbosch, South Africa
7Physik-Department der Technischen Universit?t München, D-85748 Garching, Germany
Cite this article:   
Shi-Hang Shen, Jin-Niu Hu, Hao-Zhao Liang et al  2016 Chin. Phys. Lett. 33 102103
Download: PDF(480KB)   PDF(mobile)(KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Starting with a bare nucleon-nucleon interaction, for the first time the full relativistic Brueckner–Hartree–Fock equations are solved for finite nuclei in a Dirac–Woods–Saxon basis. No free parameters are introduced to calculate the ground-state properties of finite nuclei. The nucleus $^{16}$O is investigated as an example. The resulting ground-state properties, such as binding energy and charge radius, are considerably improved as compared with the non-relativistic Brueckner–Hartree–Fock results and much closer to the experimental data. This opens the door for ab initio covariant investigations of heavy nuclei.

Received: 17 September 2016      Published: 27 October 2016
PACS:  21.60.De (Ab initio methods)  
  21.10.Dr (Binding energies and masses)  
Fund:

Supported by the National Basic Research Program of China No 2013CB834400, the National Natural Science Foundation of China under Grants Nos 11175002, 11335002, 11405090, 11375015 and 11621131001, the Research Fund for the Doctoral Program of Higher Education under Grant No 20110001110087, the DFG cluster of excellence "Origin and Structure of the Universe" (www.universe-cluster.de), the CPSC under Grant No 2012M520100, and the RIKEN IPA and iTHES projects.

TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/33/10/102103       OR      https://cpl.iphy.ac.cn/Y2016/V33/I10/102103
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Shi-Hang Shen
Jin-Niu Hu
Hao-Zhao Liang
Jie Meng
Peter Ring
Shuang-Quan Zhang
[1] Jastrow R 1951 Phys. Rev. 81 165
[2] Machleidt R 1989 Adv. Nucl. Phys. 19 189
[3] Brueckner K A, Levinson C A and Mahmoud H M 1954 Phys. Rev. 95 217
[4] Day B D 1967 Rev. Mod. Phys. 39 719
[5] Jastrow 1955 Phys. Rev. 98 1479
[6] Day B D 1978 Rev. Mod. Phys. 50 495
[7] Stoks V G J, Klomp R A M, Terheggen C P F and de Swart J J 1994 Phys. Rev. C 49 2950
[8] Wiringa R B, Stoks V G and Schiavilla R 1995 Phys. Rev. C 51 38
[9] Machleidt R 2001 Phys. Rev. C 63 024001
[10] Epelbaum E, Hammer H W and Meissner U G 2009 Rev. Mod. Phys. 81 1773
[11] Machleidt R and Entem D R 2011 Phys. Rep. 503 1
[12] Carlson J, Gandolfi S, Pederiva F, Pieper S c, Schiavilla R, Schmidt K E and Wiringa R B 2015 Rev. Mod. Phys. 87 1067
[13] Dickhoff W H and Barbieri C 2004 Prog. Part. Nucl. Phys. 52 377
[14] Hagen G, Papenbrock T, Hjorth-Jensen M and Dean D J 2014 Rep. Prog. Phys. 77 096302
[15] Lee D 2009 Prog. Part. Nucl. Phys. 63 117
[16] Barrett B R, Navratil P and Vary J P 2013 Prog. Part. Nucl. Phys. 69 131
[17] Coester F, Cohen S, Day B and Vincent C M 1970 Phys. Rev. C 1 769
[18] Fujita J and Miyazawa H 1957 Prog. Theor. Phys. 17 360
[19] Brown G and Green A 1969 Nucl. Phys. A 137 1
[20] Song H Q, Baldo M, Giansiracusa G and Lombardo U 1998 Phys. Rev. Lett. 81 1584
[21] Pieper S C and Wiringa R B 2001 Annu. Rev. Nucl. Part. Sci. 51 53
[22] Anastasio M R, Celenza L S, Pong W S and Shakin C M 1983 Phys. Rep. 100 327
[23] Brockmann R and Machleidt R 1984 Phys. Lett. B 149 283
[24] ter Haar B and Malfliet R 1987 Phys. Rep. 149 207
[25] Bethe H A and Goldstone J 1957 Proc. R. Soc. A 238 551
[26] Becker R L, Davies K T R and Patterson M R 1974 Phys. Rev. C 9 1221
[27] Müther H, Machleidt R and Brockmann R 1988 Phys. Lett. B 202 483
[28] Müther H, Machleidt R and Brockmann R 1990 Phys. Rev. C 42 1981
[29] Brockmann R and Toki H 1992 Phys. Rev. Lett. 68 3408
[30] Fritz R, Müther H and Machleidt R 1993 Phys. Rev. Lett. 71 46
[31] van Dalen E N E and Müther H 2010 Int. J. Mod. Phys. E 19 2077
[32] Van Giai N, Carlson B V, Ma Z and Wolter H 2010 J. Phys. G 37 064043
[33] Zhou S G, Meng J and Ring P 2003 Phys. Rev. C 68 034323
[34] Ring P and Schuck P 1980 The Nuclear Many-Body Problem (Berlin: Springer-Verlag)
[35] Bethe H A 1971 Annu. Rev. Nucl. Sci. 21 93
[36] Krenciglowa E M, Kund C L, Kuo T T S and Osnes E 1976 Ann. Phys. (N. Y.) 101 154
[37] Lalazissis G A, Karatzikos S, Serra M, Otsuka T and Ring P 2009 Phys. Rev. C 80 041301
[38] Long W H, Van Giai N and Meng J 2006 Phys. Lett. B 640 150
[39] Haftel M I and Tabakin F 1970 Nucl. Phys. A 158 1
[40] Schiller E, Müther H and Czerski P 1999 Phys. Rev. C 59 2934
[41] Suzuki K, Okamoto R, Kohno M and Nagata S 2000 Nucl. Phys. A 665 92
[42] Rajaraman R and Bethe H A 1967 Rev. Mod. Phys. 39 745
[43] Davies K T R, Baranger M, Tarbutton R M and Kuo T T S 1969 Phys. Rev. 177 1519
[44] Koepf W, Sharma M and Ring P 1991 Nucl. Phys. A 533 95
[45] Gu H Q, Liang H, Long W H, Giai N V and Meng J 2013 Phys. Rev. C 87 041301
[46] Chabanat E, Bonche P, Haensel P, Meyer J and Schaeffer R 1998 Nucl. Phys. A 635 231
[47] Wang M, Audi G, Wapstra A, Kondev F, MacCormick M, Xu X and Pfeiffer B 2012 Chin. Phys. C 36 1603
[48] Angeli I and Marinova K 2013 At. Data Nucl. Data Tables 99 69
[49] Coraggio L, Itaco N, Covello A, Gargano A and Kuo T T S 2003 Phys. Rev. C 68 034320
[50] Brockmann R and Machleidt R 1990 Phys. Rev. C 42 1965
[51] Roth R, Langhammer J, Calci A, Binder S and Navrátil P 2011 Phys. Rev. Lett. 107 072501
[52] Hagen G, Papenbrock T, Dean D J, Hjorth-Jensen M and Asokan B V 2009 Phys. Rev. C 80 021306
[53] Ozawa A et al 2001 Nucl. Phys. A 691 599
[54] van Dalen E N E and Müther H 2011 Phys. Rev. C 84 024320
[55] Litvinova E and Ring P 2006 Phys. Rev. C 73 044328
[56] Baldo M, Bombaci I and Burgio G F 1997 Astron. Astrophys. 328 274
[57] Zuo W, Lejeune A, Lombardo U and Mathiot J 2002 Nucl. Phys. A 706 418
[58] Brown G E, Weise W, Baym G and Speth J 1987 Commun. Nucl. Part. Phys. 17 39
[59] Negele J 1982 Rev. Mod. Phys. 54 913
Related articles from Frontiers Journals
[1] LIU Lang. Ab Initio MCSM Calculation for Reduced Matrix Elements of E2 Operator for A=10 Nuclei[J]. Chin. Phys. Lett., 2014, 31(08): 102103
[2] H. Sadeghi, R. Ghasemi. Low-Energy Direct Capture in the 12C(α,γ)16O Reaction[J]. Chin. Phys. Lett., 2014, 31(06): 102103
[3] H. Sadeghi. S-Factor of the 3H(α,γ)7Li Reaction at Astrophysical Energies[J]. Chin. Phys. Lett., 2013, 30(10): 102103
[4] ZHANG Qiao-Li, YUAN Da-Qing, ZHANG Huan-Qiao, FAN Ping, ZUO Yi, ZHENG Yong-Nan, K. Masuta, M. Fukuda, M. Mihara, T. Minamisono, A. Kitagawa, ZHU Sheng-Yun. The ab initio Calculation of Electric Field Gradient at the Site of P Impurity in α-Al3O2[J]. Chin. Phys. Lett., 2012, 29(9): 102103
[5] GAN Sheng-Xin,ZUO Wei**,U. Lombardo. Nucleon Effective Mass in Asymmetric Nuclear Matter within Extended Brueckner Approach[J]. Chin. Phys. Lett., 2012, 29(4): 102103
Viewed
Full text


Abstract