Chin. Phys. Lett.  2016, Vol. 33 Issue (01): 014207    DOI: 10.1088/0256-307X/33/1/014207
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Simulation of High-Transmission Chiral Metamaterial with Impedance Matching to a Vacuum
Xiu-Li Jia, Qing-Xin Meng, Xiao-Ou Wang**, Zhong-Xiang Zhou
School of Science, Harbin Institute of Technology, Harbin 150001
Cite this article:   
Xiu-Li Jia, Qing-Xin Meng, Xiao-Ou Wang et al  2016 Chin. Phys. Lett. 33 014207
Download: PDF(1732KB)   PDF(mobile)(KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract For a previously simulated eight-broadband negative-refraction-index chiral metamaterial, we use S-parameter retrieval methods to determine the complex effective permittivity, permeability, and the impedance. We also calculate the figure of merit, which is defined as the ratio of the real and the imaginary refraction components, and compare it with those of fishnet metamaterials. The simulation results show that our chiral metamaterial exhibits high transmission and impedance matching to a vacuum. Also, we determine that the electric and magnetic dipoles of the surface plasmons play an important role in determining the nine resonance frequencies. Therefore, this investigation provides an experimental basis for developing metamaterial devices with multiple and broad resonance frequency bands.
Received: 07 June 2015      Published: 29 January 2016
PACS:  42.70.Nq (Other nonlinear optical materials; photorefractive and semiconductor materials)  
  76.70.Fz (Double nuclear magnetic resonance (DNMR), dynamical nuclear polarization)  
  81.05.Zx (New materials: theory, design, and fabrication)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/33/1/014207       OR      https://cpl.iphy.ac.cn/Y2016/V33/I01/014207
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Xiu-Li Jia
Qing-Xin Meng
Xiao-Ou Wang
Zhong-Xiang Zhou
[1] Linden S, Enkrich C, Wegener M, Zhou J, Koschny T and Soukoulis C M 2004 Science 306 1351
[2] Barnes W L, Dereux A and Ebbesen T W 2003 Nature 424 824
[3] Bin G 2013 Chin. Phys. Lett. 30 105201
[4] Liu M H, Hu X W, Jiang Z H, Lu X P, Gu C L and Pan Y 2001 Chin. Phys. Lett. 18 1225
[5] Chen Y Y, Song Y, Li Z H and He A Z 2011 Chin. Phys. B 20 034201
[6] Zhou J, Dong J, Wang B, Koschny T and Soukoulis C M 2009 Phys. Rev. B 79 121104
[7] Pendry J B 2004 Science 306 1353
[8] Song K, Zhao X P, Fu Q H, Liu Y H and Zhu W R 2012 J. Electromagn. Waves Appl. 26 1967
[9] Liu Y, Cheng Y Z and Cheng Z Z 2014 Optik 125 1316
[10] Wu J F, Ng B H, Turaga S P, Breese M B H, Maier S A, Hong M H, Bettiol A A and Moser H O 2013 Appl. Phys. Lett. 103 141106
[11] Panpradit W, Sonsilphong A, Soemphol C and Wongkasem N 2012 J. Opt. 14 075101
[12] Plum E, Fedotov V A, Schwanecke A S, Zheludev N I and Chen Y 2007 Appl. Phys. Lett. 90 223113
[13] Liu N and Giessen H 2008 Opt. Express 16 21233
[14] Giloann M and Astilean S 2014 Opt. Commun. 315 122
[15] Schurig D, Mock J J, Justice B J, Cummer S A, Pendry J B, Starr A F and Smith D R 1899 Science 10 977
[16] Pendry J B 2000 Phys. Rev. Lett. 85 3966
[17] Hu J, Yan C S and Lin Q C 2006 J. Zhejiang Univ. Sci. A 7 89
[18] Szabo Z, Park G H, Hedge R and Li E P 2010 IEEE Trans. Microwave Theory Tech. 58 2646
[19] Boltasseva A and Atwater H A 2011 Science 331 290
[20] Jak?i? Z, Vukovi? S M and Buha J 2011 J. Nanophoton. 5 051818
[21] Tanaskovi? S D, Obradov M, Jak?i? O and Jak?i? Z 2014 Phys. Scr. T162 014048
[22] Franzen S, Rhodes C, Cerruti M, Gerber R W, Losego M, Maria J P and Aspnes D E 2009 Opt. Lett. 34 2867
[23] Cheng Y Z, Nie Y, Cheng Z Z, Wang X and Gong R Z 2013 J. Electromagnetic Waves Appl. 27 1068
[24] Zhang S, Fan W, Panoiu N C, Malloy K J, Osgood R M and Brueck S R J 2005 Phys. Rev. Lett. 95 137404
[25] Smith D R, Schultz S, Marko? P and Soukoulis C M 2002 Phys. Rev. B 65 195104
[26] Costa F and Monorchio A 2012 IEEE Trans. Antennas Propag. 60 4650
[27] Costa F, Genovesi S, Monorchio A and Manara G 2013 IEEE Trans. Antennas Propag. 61 1201
[28] Shen J Q 2014 J. Phys. Soc. Jpn. 83 124401
[29] Song Z Y and Xu H 2014 Europhys. Lett. 107 57007
Related articles from Frontiers Journals
[1] Yue Lang, Zhaoyang Peng, and Zengxiu Zhao. Multiband Dynamics of Extended Harmonic Generation in Solids under Ultraviolet Injection[J]. Chin. Phys. Lett., 2022, 39(11): 014207
[2] N. F. Zulkipli, M. Batumalay, F. S. M. Samsamnun, M. B. H. Mahyuddin, E. Hanafi, T. F. T. M. N. Izam, M. I. M. A. Khudus, S. W. Harun. Nanosecond Pulses Generation with Samarium Oxide Film Saturable Absorber[J]. Chin. Phys. Lett., 2019, 36(7): 014207
[3] R. Z. R. R. Rosdin, M. T. Ahmad, A. R. Muhammad, Z. Jusoh, H. Arof, S. W. Harun. Nanosecond Pulse Generation with Silver Nanoparticle Saturable Absorber[J]. Chin. Phys. Lett., 2019, 36(5): 014207
[4] M. F. M. Rusdi, M. B. H. Mahyuddin, A. A. Latiff , H. Ahmad, S. W. Harun. Q-Switched Erbium-Doped Fiber Laser Using Cadmium Selenide Coated onto Side-Polished D-Shape Fiber as Saturable Absorber[J]. Chin. Phys. Lett., 2018, 35(10): 014207
[5] A. Nady, M. F. Baharom, A. A. Latiff, S. W. Harun. Mode-Locked Erbium-Doped Fiber Laser Using Vanadium Oxide as Saturable Absorber[J]. Chin. Phys. Lett., 2018, 35(4): 014207
[6] A. H. A. Rosol, H. A. Rahman, E. I. Ismail, N. Irawati, Z. Jusoh, A. A. Latiff, S. W. Harun. Cadmium Selenide Polymer Microfiber Saturable Absorber for Q-Switched Fiber Laser Applications[J]. Chin. Phys. Lett., 2017, 34(9): 014207
[7] Li-Bo Fang, Wei Pan, Si-Hua Zhong, Wen-Zhong Shen. Nonresonant and Resonant Nonlinear Absorption of CdSe-Based Nanoplatelets[J]. Chin. Phys. Lett., 2017, 34(9): 014207
[8] N. A. Aziz, A. A. Latiff, M. Q. Lokman, E. Hanafi, S. W. Harun. Zinc Oxide-Based Q-Switched Erbium-Doped Fiber Laser[J]. Chin. Phys. Lett., 2017, 34(4): 014207
[9] Lan-Qing Zhou, Yan-Bang Zhang, Teng-Fei Yan, Ying Li, Guo-Zhi Jia, Huai-Zhe Xu, Xin-Hui Zhang. Third-Order Nonlinear Optical Response near the Plasmon Resonance Band of Cu$_{2-x}$Se Nanocrystals[J]. Chin. Phys. Lett., 2017, 34(1): 014207
[10] Meng Zhao, Chun-Hua Xu, Wei-Jie Hu, Wen-Jun Wang, Li-Wei Guo, Xiao-Long Chen. Observation of Two-Photon Absorption and Nonlinear Refraction in AlN[J]. Chin. Phys. Lett., 2016, 33(10): 014207
[11] Demissie Gelmecha, Jun-Qing Li Merhawit Teklu. Pulse Propagation with Self-Phase Modulation in Nonlinear Chiral Fiber and Its Applications[J]. Chin. Phys. Lett., 2016, 33(09): 014207
[12] Meng-Meng Yue, Li-He Yan, Jin-Hai Si, Xun Hou. Influence of Self-Diffraction Effect on Femtosecond Time-Resolved Single-Shot Optical Kerr Measurements[J]. Chin. Phys. Lett., 2016, 33(04): 014207
[13] CUI Zheng, YAO Bao-Quan, DUAN Xiao-Ming, BAI Shuang, LI Jiang, YUAN Jin-He, DAI Tong-Yu, LI Chao-Yu, PAN Yu-Bai. Cr2+:ZnS Saturable Absorber Passively Q-Switched Ho:LuVO4 Laser[J]. Chin. Phys. Lett., 2015, 32(10): 014207
[14] CUI Zheng, YAO Bao-Quan, DUAN Xiao-Ming, LI Jiang, BAI Shuang, LI Xiao-Lei, ZHANG Ye, YUAN Jin-He, DAI Tong-Yu, JU You-Lun, LI Chao-Yu, PAN Yu-Bai. Experimental Study on a Passively Q-Switched Ho:YLF Laser with Polycrystalline Cr2+:ZnS as a Saturable Absorber[J]. Chin. Phys. Lett., 2015, 32(08): 014207
[15] ZENG Yong-Ping, LIU Wen-Jie, WENG Guo-En, ZHAO Wan-Ru, ZUO Hai-Jie, YU Jian, ZHANG Jiang-Yong, YING Lei-Ying, ZHANG Bao-Ping. Effect of In Diffusion on the Property of Blue Light-Emitting Diodes[J]. Chin. Phys. Lett., 2015, 32(06): 014207
Viewed
Full text


Abstract